Parabolic Cylinder Functions - 12.15 Generalized Parabolic Cylinder Functions

From testwiki
Revision as of 11:31, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.15.E1 d 2 w d z 2 + ( ν + λ - 1 - λ - 2 z λ ) w = 0 derivative 𝑤 𝑧 2 𝜈 superscript 𝜆 1 superscript 𝜆 2 superscript 𝑧 𝜆 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(% \nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w=0}}
\deriv[2]{w}{z}+\left(\nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w = 0

diff(w, [z$(2)])+(nu + (lambda)^(- 1)- (lambda)^(- 2)* (z)^(lambda))*w = 0
D[w, {z, 2}]+(\[Nu]+ \[Lambda]^(- 1)- \[Lambda]^(- 2)* (z)^\[Lambda])*w == 0
Failure Failure
Failed [300 / 300]
Result: .7322275248+.9199723429*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.402820433+.5288298490*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.7322275239543282, 0.91997234266967]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6337978798301105, 0.5539469388852316]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data