Hypergeometric Function - 15.8 Transformations of Variable
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
15.8.E1 | \hyperOlverF@@{a}{b}{c}{z} = (1-z)^{-a}\hyperOlverF@@{a}{c-b}{c}{\frac{z}{z-1}} |
hypergeom([a, b], [c], z)/GAMMA(c) = (1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))/GAMMA(c)
|
Hypergeometric2F1Regularized[a, b, c, z] == (1 - z)^(- a)* Hypergeometric2F1Regularized[a, c - b, c, Divide[z,z - 1]]
|
Failure | Failure | Error | Failed [1 / 300]
Result: Complex[-0.028209479177387697, -0.04886025119029158]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}
| |
15.8.E1 | (1-z)^{-a}\hyperOlverF@@{a}{c-b}{c}{\frac{z}{z-1}} = (1-z)^{-b}\hyperOlverF@@{c-a}{b}{c}{\frac{z}{z-1}} |
(1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))/GAMMA(c) = (1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1))/GAMMA(c)
|
(1 - z)^(- a)* Hypergeometric2F1Regularized[a, c - b, c, Divide[z,z - 1]] == (1 - z)^(- b)* Hypergeometric2F1Regularized[c - a, b, c, Divide[z,z - 1]]
|
Failure | Failure | Error | Successful [Tested: 300] | |
15.8.E1 | (1-z)^{-b}\hyperOlverF@@{c-a}{b}{c}{\frac{z}{z-1}} = (1-z)^{c-a-b}\hyperOlverF@@{c-a}{c-b}{c}{z} |
(1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1))/GAMMA(c) = (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z)/GAMMA(c)
|
(1 - z)^(- b)* Hypergeometric2F1Regularized[c - a, b, c, Divide[z,z - 1]] == (1 - z)^(c - a - b)* Hypergeometric2F1Regularized[c - a, c - b, c, z]
|
Failure | Failure | Error | Failed [1 / 300]
Result: Complex[0.02820947917738814, 0.04886025119029169]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}
| |
15.8.E2 | \frac{\sin@{\pi(b-a)}}{\pi}\hyperOlverF@@{a}{b}{c}{z} = \frac{(-z)^{-a}}{\EulerGamma@{b}\EulerGamma@{c-a}}\hyperOlverF@@{a}{a-c+1}{a-b+1}{\frac{1}{z}}-\frac{(-z)^{-b}}{\EulerGamma@{a}\EulerGamma@{c-b}}\hyperOlverF@@{b}{b-c+1}{b-a+1}{\frac{1}{z}} |
(sin(Pi*(b - a)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c) = ((- z)^(- a))/(GAMMA(b)*GAMMA(c - a))*hypergeom([a, a - c + 1], [a - b + 1], (1)/(z))/GAMMA(a - b + 1)-((- z)^(- b))/(GAMMA(a)*GAMMA(c - b))*hypergeom([b, b - c + 1], [b - a + 1], (1)/(z))/GAMMA(b - a + 1)
|
Divide[Sin[Pi*(b - a)],Pi]*Hypergeometric2F1Regularized[a, b, c, z] == Divide[(- z)^(- a),Gamma[b]*Gamma[c - a]]*Hypergeometric2F1Regularized[a, a - c + 1, a - b + 1, Divide[1,z]]-Divide[(- z)^(- b),Gamma[a]*Gamma[c - b]]*Hypergeometric2F1Regularized[b, b - c + 1, b - a + 1, Divide[1,z]]
|
Failure | Failure | Error | Skip - No test values generated | |
15.8.E3 | \frac{\sin@{\pi(b-a)}}{\pi}\hyperOlverF@@{a}{b}{c}{z} = \frac{(1-z)^{-a}}{\EulerGamma@{b}\EulerGamma@{c-a}}\hyperOlverF@@{a}{c-b}{a-b+1}{\frac{1}{1-z}}-\frac{(1-z)^{-b}}{\EulerGamma@{a}\EulerGamma@{c-b}}\hyperOlverF@@{b}{c-a}{b-a+1}{\frac{1}{1-z}} |
(sin(Pi*(b - a)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c) = ((1 - z)^(- a))/(GAMMA(b)*GAMMA(c - a))*hypergeom([a, c - b], [a - b + 1], (1)/(1 - z))/GAMMA(a - b + 1)-((1 - z)^(- b))/(GAMMA(a)*GAMMA(c - b))*hypergeom([b, c - a], [b - a + 1], (1)/(1 - z))/GAMMA(b - a + 1)
|
Divide[Sin[Pi*(b - a)],Pi]*Hypergeometric2F1Regularized[a, b, c, z] == Divide[(1 - z)^(- a),Gamma[b]*Gamma[c - a]]*Hypergeometric2F1Regularized[a, c - b, a - b + 1, Divide[1,1 - z]]-Divide[(1 - z)^(- b),Gamma[a]*Gamma[c - b]]*Hypergeometric2F1Regularized[b, c - a, b - a + 1, Divide[1,1 - z]]
|
Failure | Failure | Error | Successful [Tested: 10] | |
15.8.E4 | \frac{\sin@{\pi(c-a-b)}}{\pi}\hyperOlverF@@{a}{b}{c}{z} = \frac{1}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\hyperOlverF@@{a}{b}{a+b-c+1}{1-z}-\frac{(1-z)^{c-a-b}}{\EulerGamma@{a}\EulerGamma@{b}}\hyperOlverF@@{c-a}{c-b}{c-a-b+1}{1-z} |
(sin(Pi*(c - a - b)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c) = (1)/(GAMMA(c - a)*GAMMA(c - b))*hypergeom([a, b], [a + b - c + 1], 1 - z)/GAMMA(a + b - c + 1)-((1 - z)^(c - a - b))/(GAMMA(a)*GAMMA(b))*hypergeom([c - a, c - b], [c - a - b + 1], 1 - z)/GAMMA(c - a - b + 1)
|
Divide[Sin[Pi*(c - a - b)],Pi]*Hypergeometric2F1Regularized[a, b, c, z] == Divide[1,Gamma[c - a]*Gamma[c - b]]*Hypergeometric2F1Regularized[a, b, a + b - c + 1, 1 - z]-Divide[(1 - z)^(c - a - b),Gamma[a]*Gamma[b]]*Hypergeometric2F1Regularized[c - a, c - b, c - a - b + 1, 1 - z]
|
Failure | Failure | Failed [2 / 5] Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 3/2, b = 3/2, c = 2, z = 1/2}
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, b = 1/2, c = 2, z = 1/2}
|
Successful [Tested: 15] | |
15.8.E5 | \frac{\sin@{\pi(c-a-b)}}{\pi}\hyperOlverF@@{a}{b}{c}{z} = \frac{z^{-a}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\hyperOlverF@@{a}{a-c+1}{a+b-c+1}{1-\frac{1}{z}}-\frac{(1-z)^{c-a-b}z^{a-c}}{\EulerGamma@{a}\EulerGamma@{b}}\hyperOlverF@@{c-a}{1-a}{c-a-b+1}{1-\frac{1}{z}} |
(sin(Pi*(c - a - b)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c) = ((z)^(- a))/(GAMMA(c - a)*GAMMA(c - b))*hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z))/GAMMA(a + b - c + 1)-((1 - z)^(c - a - b)* (z)^(a - c))/(GAMMA(a)*GAMMA(b))*hypergeom([c - a, 1 - a], [c - a - b + 1], 1 -(1)/(z))/GAMMA(c - a - b + 1)
|
Divide[Sin[Pi*(c - a - b)],Pi]*Hypergeometric2F1Regularized[a, b, c, z] == Divide[(z)^(- a),Gamma[c - a]*Gamma[c - b]]*Hypergeometric2F1Regularized[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]]-Divide[(1 - z)^(c - a - b)* (z)^(a - c),Gamma[a]*Gamma[b]]*Hypergeometric2F1Regularized[c - a, 1 - a, c - a - b + 1, 1 -Divide[1,z]]
|
Failure | Failure | Error | Skip - No test values generated | |
15.8.E6 | \hyperF@@{-m}{b}{c}{z} = \frac{(b)_{m}}{(c)_{m}}(-z)^{m}\hyperF@@{-m}{1-c-m}{1-b-m}{\frac{1}{z}} |
|
hypergeom([- m, b], [c], z) = (b[m])/(c[m])*(- z)^(m)* hypergeom([- m, 1 - c - m], [1 - b - m], (1)/(z))
|
Hypergeometric2F1[- m, b, c, z] == Divide[Subscript[b, m],Subscript[c, m]]*(- z)^(m)* Hypergeometric2F1[- m, 1 - c - m, 1 - b - m, Divide[1,z]]
|
Failure | Failure | Error | Failed [252 / 300]
Result: Plus[Complex[1.4330127018922194, 0.24999999999999997], Times[Complex[1.4330127018922196, 0.25], Subscript[-1.5, 1], Power[Subscript[1.5, 1], -1]]]
Test Values: {Rule[b, -1.5], Rule[c, 1.5], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[1.8910254037844387, 0.5433012701892219], Times[Complex[-9.455127018922195, -2.7165063509461094], Subscript[-1.5, 2], Power[Subscript[1.5, 2], -1]]]
Test Values: {Rule[b, -1.5], Rule[c, 1.5], Rule[m, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.8.E6 | \frac{(b)_{m}}{(c)_{m}}(-z)^{m}\hyperF@@{-m}{1-c-m}{1-b-m}{\frac{1}{z}} = \frac{(b)_{m}}{(c)_{m}}(1-z)^{m}\hyperF@@{-m}{c-b}{1-b-m}{\frac{1}{1-z}} |
|
(b[m])/(c[m])*(- z)^(m)* hypergeom([- m, 1 - c - m], [1 - b - m], (1)/(z)) = (b[m])/(c[m])*(1 - z)^(m)* hypergeom([- m, c - b], [1 - b - m], (1)/(1 - z))
|
Divide[Subscript[b, m],Subscript[c, m]]*(- z)^(m)* Hypergeometric2F1[- m, 1 - c - m, 1 - b - m, Divide[1,z]] == Divide[Subscript[b, m],Subscript[c, m]]*(1 - z)^(m)* Hypergeometric2F1[- m, c - b, 1 - b - m, Divide[1,1 - z]]
|
Failure | Failure | Error | Failed [164 / 300]
Result: Times[Complex[0.0, -5.551115123125783*^-17], Subscript[-1.5, 1], Power[Subscript[1.5, 1], -1]]
Test Values: {Rule[b, -1.5], Rule[c, 1.5], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Times[Complex[0.0, 4.440892098500626*^-16], Subscript[-1.5, 2], Power[Subscript[1.5, 2], -1]]
Test Values: {Rule[b, -1.5], Rule[c, 1.5], Rule[m, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.8.E7 | \hyperF@@{-m}{b}{c}{z} = \frac{(c-b)_{m}}{(c)_{m}}\hyperF@@{-m}{b}{b-c-m+1}{1-z} |
|
hypergeom([- m, b], [c], z) = (c - b[m])/(c[m])*hypergeom([- m, b], [b - c - m + 1], 1 - z)
|
Hypergeometric2F1[- m, b, c, z] == Divide[Subscript[c - b, m],Subscript[c, m]]*Hypergeometric2F1[- m, b, b - c - m + 1, 1 - z]
|
Failure | Failure | Error | Failed [300 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: DirectedInfinity[]
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[m, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.8.E7 | \frac{(c-b)_{m}}{(c)_{m}}\hyperF@@{-m}{b}{b-c-m+1}{1-z} = \frac{(c-b)_{m}}{(c)_{m}}z^{m}\hyperF@@{-m}{1-c-m}{b-c-m+1}{1-\frac{1}{z}} |
|
(c - b[m])/(c[m])*hypergeom([- m, b], [b - c - m + 1], 1 - z) = (c - b[m])/(c[m])*(z)^(m)* hypergeom([- m, 1 - c - m], [b - c - m + 1], 1 -(1)/(z))
|
Divide[Subscript[c - b, m],Subscript[c, m]]*Hypergeometric2F1[- m, b, b - c - m + 1, 1 - z] == Divide[Subscript[c - b, m],Subscript[c, m]]*(z)^(m)* Hypergeometric2F1[- m, 1 - c - m, b - c - m + 1, 1 -Divide[1,z]]
|
Failure | Failure | Error | Failed [206 / 300]
Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[m, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
15.8.E8 | \hyperOlverF@@{a}{a+m}{c}{z} = \frac{(-z)^{-a}}{\EulerGamma@{a+m}}\sum_{k=0}^{m-1}\frac{(a)_{k}(m-k-1)!}{k!\EulerGamma@{c-a-k}}z^{-k}+\frac{(-z)^{-a}}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(a+m)_{k}}{k!(k+m)!\EulerGamma@{c-a-k-m}}(-1)^{k}z^{-k-m}\*\left(\ln@{-z}+\digamma@{k+1}+\digamma@{k+m+1}-\digamma@{a+k+m}-\digamma@{c-a-k-m}\right) |
hypergeom([a, a + m], [c], z)/GAMMA(c) = ((- z)^(- a))/(GAMMA(a + m))*sum((a[k]*factorial(m - k - 1))/(factorial(k)*GAMMA(c - a - k))*(z)^(- k), k = 0..m - 1)+((- z)^(- a))/(GAMMA(a))*sum((a + m[k])/(factorial(k)*factorial(k + m)*GAMMA(c - a - k - m))*(- 1)^(k)* (z)^(- k - m)*(ln(- z)+ Psi(k + 1)+ Psi(k + m + 1)- Psi(a + k + m)- Psi(c - a - k - m)), k = 0..infinity)
|
Hypergeometric2F1Regularized[a, a + m, c, z] == Divide[(- z)^(- a),Gamma[a + m]]*Sum[Divide[Subscript[a, k]*(m - k - 1)!,(k)!*Gamma[c - a - k]]*(z)^(- k), {k, 0, m - 1}, GenerateConditions->None]+Divide[(- z)^(- a),Gamma[a]]*Sum[Divide[Subscript[a + m, k],(k)!*(k + m)!*Gamma[c - a - k - m]]*(- 1)^(k)* (z)^(- k - m)*(Log[- z]+ PolyGamma[k + 1]+ PolyGamma[k + m + 1]- PolyGamma[a + k + m]- PolyGamma[c - a - k - m]), {k, 0, Infinity}, GenerateConditions->None]
|
Error | Failure | - | Skip - No test values generated | |
15.8.E9 | \hyperOlverF@@{a}{a+m}{c}{z} = \frac{(1-z)^{-a}}{\EulerGamma@{a+m}\EulerGamma@{c-a}}\sum_{k=0}^{m-1}\frac{(a)_{k}(c-a-m)_{k}(m-k-1)!}{k!}(z-1)^{-k}+\frac{(-1)^{m}(1-z)^{-a-m}}{\EulerGamma@{a}\EulerGamma@{c-a-m}}\sum_{k=0}^{\infty}\frac{(a+m)_{k}(c-a)_{k}}{k!(k+m)!}(1-z)^{-k}\*(\ln@{1-z}+\digamma@{k+1}+\digamma@{k+m+1}-\digamma@{a+k+m}-\digamma@{c-a+k}) |
hypergeom([a, a + m], [c], z)/GAMMA(c) = ((1 - z)^(- a))/(GAMMA(a + m)*GAMMA(c - a))*sum((a[k]*c - a - m[k]*factorial(m - k - 1))/(factorial(k))*(z - 1)^(- k), k = 0..m - 1)+((- 1)^(m)*(1 - z)^(- a - m))/(GAMMA(a)*GAMMA(c - a - m))*sum((a + m[k]*c - a[k])/(factorial(k)*factorial(k + m))*(1 - z)^(- k)*(ln(1 - z)+ Psi(k + 1)+ Psi(k + m + 1)- Psi(a + k + m)- Psi(c - a + k)), k = 0..infinity)
|
Hypergeometric2F1Regularized[a, a + m, c, z] == Divide[(1 - z)^(- a),Gamma[a + m]*Gamma[c - a]]*Sum[Divide[Subscript[a, k]*Subscript[c - a - m, k]*(m - k - 1)!,(k)!]*(z - 1)^(- k), {k, 0, m - 1}, GenerateConditions->None]+Divide[(- 1)^(m)*(1 - z)^(- a - m),Gamma[a]*Gamma[c - a - m]]*Sum[Divide[Subscript[a + m, k]*Subscript[c - a, k],(k)!*(k + m)!]*(1 - z)^(- k)*(Log[1 - z]+ PolyGamma[k + 1]+ PolyGamma[k + m + 1]- PolyGamma[a + k + m]- PolyGamma[c - a + k]), {k, 0, Infinity}, GenerateConditions->None]
|
Error | Aborted | - | Failed [2 / 2]
Result: Plus[Complex[0.8934823398107985, 0.11625604883874943], Times[Complex[0.18357341911556996, 0.10033661972146816], NSum[Times[Power[Plus[1, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Times[-1, k]], Power[Factorial[k], -1], Power[Factorial[Plus[1, k]], -1], Plus[Log[Plus[1, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]], PolyGamma[0, Plus[1, k]], Times[-2, PolyGamma[0, Plus[1.5, k]]], PolyGamma[0, Plus[2, k]]], Power[Subscript[1.5, k], 2]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[Complex[-1.0916552187951503, -0.18372460978003777], Power[Subscript[0.5, 0], 2]]], {Rule[a, 0.5], Rule[c, 2], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
Result: Plus[Complex[0.8646684259719354, -0.05865467444211362], Times[Complex[0.17537516348927204, -0.04648067160197167], NSum[Times[Power[Plus[1, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]], Times[-1, k]], Power[Factorial[k], -1], Power[Factorial[Plus[1, k]], -1], Plus[Log[Plus[1, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]], PolyGamma[0, Plus[1, k]], Times[-2, PolyGamma[0, Plus[1.5, k]]], PolyGamma[0, Plus[2, k]]], Power[Subscript[1.5, k], 2]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[Complex[-1.0517400191081774, 0.0910544077031535], Power[Subscript[0.5, 0], 2]]], {Rule[a, 0.5], Rule[c, 2], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}
| |
15.8.E10 | \hyperOlverF@@{a}{b}{a+b+m}{z} = \frac{1}{\EulerGamma@{a+m}\EulerGamma@{b+m}}\sum_{k=0}^{m-1}\frac{(a)_{k}(b)_{k}(m-k-1)!}{k!}(z-1)^{k}-\frac{(z-1)^{m}}{\EulerGamma@{a}\EulerGamma@{b}}\sum_{k=0}^{\infty}\frac{(a+m)_{k}(b+m)_{k}}{k!(k+m)!}(1-z)^{k}\*\left(\ln@{1-z}-\digamma@{k+1}-\digamma@{k+m+1}+\digamma@{a+k+m}+\digamma@{b+k+m}\right) |
hypergeom([a, b], [a + b + m], z)/GAMMA(a + b + m) = (1)/(GAMMA(a + m)*GAMMA(b + m))*sum((a[k]*b[k]*factorial(m - k - 1))/(factorial(k))*(z - 1)^(k), k = 0..m - 1)-((z - 1)^(m))/(GAMMA(a)*GAMMA(b))*sum((a + m[k]*b + m[k])/(factorial(k)*factorial(k + m))*(1 - z)^(k)*(ln(1 - z)- Psi(k + 1)- Psi(k + m + 1)+ Psi(a + k + m)+ Psi(b + k + m)), k = 0..infinity)
|
Hypergeometric2F1Regularized[a, b, a + b + m, z] == Divide[1,Gamma[a + m]*Gamma[b + m]]*Sum[Divide[Subscript[a, k]*Subscript[b, k]*(m - k - 1)!,(k)!]*(z - 1)^(k), {k, 0, m - 1}, GenerateConditions->None]-Divide[(z - 1)^(m),Gamma[a]*Gamma[b]]*Sum[Divide[Subscript[a + m, k]*Subscript[b + m, k],(k)!*(k + m)!]*(1 - z)^(k)*(Log[1 - z]- PolyGamma[k + 1]- PolyGamma[k + m + 1]+ PolyGamma[a + k + m]+ PolyGamma[b + k + m]), {k, 0, Infinity}, GenerateConditions->None]
|
Error | Failure | - | Skipped - Because timed out | |
15.8.E11 | \hyperOlverF@@{a}{b}{a+b+m}{z} = \frac{z^{-a}}{\EulerGamma@{a+m}}\sum_{k=0}^{m-1}\frac{(a)_{k}(m-k-1)!}{k!\EulerGamma@{b+m-k}}\left(1-\frac{1}{z}\right)^{k}-\frac{z^{-a}}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(a+m)_{k}}{k!(k+m)!\EulerGamma@{b-k}}(-1)^{k}\left(1-\frac{1}{z}\right)^{k+m}\*\left(\ln\left(\frac{1-z}{z}\right)-\digamma@{k+1}-\digamma@{k+m+1}+\digamma@{a+k+m}+\digamma@{b-k}\right) |
hypergeom([a, b], [a + b + m], z)/GAMMA(a + b + m) = ((z)^(- a))/(GAMMA(a + m))*sum((a[k]*factorial(m - k - 1))/(factorial(k)*GAMMA(b + m - k))*(1 -(1)/(z))^(k), k = 0..m - 1)-((z)^(- a))/(GAMMA(a))*sum((a + m[k])/(factorial(k)*factorial(k + m)*GAMMA(b - k))*(- 1)^(k)*(1 -(1)/(z))^(k + m)*(ln((1 - z)/(z))- Psi(k + 1)- Psi(k + m + 1)+ Psi(a + k + m)+ Psi(b - k)), k = 0..infinity)
|
Hypergeometric2F1Regularized[a, b, a + b + m, z] == Divide[(z)^(- a),Gamma[a + m]]*Sum[Divide[Subscript[a, k]*(m - k - 1)!,(k)!*Gamma[b + m - k]]*(1 -Divide[1,z])^(k), {k, 0, m - 1}, GenerateConditions->None]-Divide[(z)^(- a),Gamma[a]]*Sum[Divide[Subscript[a + m, k],(k)!*(k + m)!*Gamma[b - k]]*(- 1)^(k)*(1 -Divide[1,z])^(k + m)*(Log[Divide[1 - z,z]]- PolyGamma[k + 1]- PolyGamma[k + m + 1]+ PolyGamma[a + k + m]+ PolyGamma[b - k]), {k, 0, Infinity}, GenerateConditions->None]
|
Translation Error | Translation Error | - | - | |
15.8.E13 | \hyperF@@{a}{b}{2b}{z} = \left(1-\tfrac{1}{2}z\right)^{-a}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}a+\tfrac{1}{2}}{b+\tfrac{1}{2}}{\left(\frac{z}{2-z}\right)^{2}} |
hypergeom([a, b], [2*b], z) = (1 -(1)/(2)*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [b +(1)/(2)], ((z)/(2 - z))^(2))
|
Hypergeometric2F1[a, b, 2*b, z] == (1 -Divide[1,2]*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], b +Divide[1,2], (Divide[z,2 - z])^(2)]
|
Failure | Failure | Failed [74 / 180] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [67 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data | |
15.8.E14 | \hyperF@@{a}{b}{2b}{z} = \left(1-z\right)^{-\ifrac{a}{2}}\hyperF@@{\tfrac{1}{2}a}{b-\tfrac{1}{2}a}{b+\tfrac{1}{2}}{\frac{z^{2}}{4z-4}} |
hypergeom([a, b], [2*b], z) = (1 - z)^(-(a)/(2))* hypergeom([(1)/(2)*a, b -(1)/(2)*a], [b +(1)/(2)], ((z)^(2))/(4*z - 4))
|
Hypergeometric2F1[a, b, 2*b, z] == (1 - z)^(-Divide[a,2])* Hypergeometric2F1[Divide[1,2]*a, b -Divide[1,2]*a, b +Divide[1,2], Divide[(z)^(2),4*z - 4]]
|
Failure | Failure | Failed [74 / 180] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [67 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data | |
15.8.E15 | \hyperF@@{a}{b}{a-b+1}{z} = (1+z)^{-a}\hyperF@@{\frac{1}{2}a}{\frac{1}{2}a+\frac{1}{2}}{a-b+1}{\frac{4z}{(1+z)^{2}}} |
hypergeom([a, b], [a - b + 1], z) = (1 + z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [a - b + 1], (4*z)/((1 + z)^(2)))
|
Hypergeometric2F1[a, b, a - b + 1, z] == (1 + z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], a - b + 1, Divide[4*z,(1 + z)^(2)]]
|
Failure | Failure | Failed [6 / 36] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = 3/2, z = 1/2}
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -1/2, z = 1/2}
... skip entries to safe data |
Failed [30 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data | |
15.8.E16 | \hyperF@@{a}{b}{a-b+1}{z} = (1-z)^{-a}\hyperF@@{\frac{1}{2}a}{\frac{1}{2}a-b+\frac{1}{2}}{a-b+1}{\frac{-4z}{(1-z)^{2}}} |
hypergeom([a, b], [a - b + 1], z) = (1 - z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a - b +(1)/(2)], [a - b + 1], (- 4*z)/((1 - z)^(2)))
|
Hypergeometric2F1[a, b, a - b + 1, z] == (1 - z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a - b +Divide[1,2], a - b + 1, Divide[- 4*z,(1 - z)^(2)]]
|
Failure | Failure | Failed [6 / 36] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = 3/2, z = 1/2}
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -1/2, z = 1/2}
... skip entries to safe data |
Failed [30 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data | |
15.8.E17 | \hyperF@@{a}{b}{\frac{1}{2}(a+b+1)}{z} = (1-2z)^{-a}\hyperF@@{\frac{1}{2}a}{\frac{1}{2}a+\frac{1}{2}}{\frac{1}{2}(a+b+1)}{\frac{4z(z-1)}{(1-2z)^{2}}} |
|
hypergeom([a, b], [(1)/(2)*(a + b + 1)], z) = (1 - 2*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(1)/(2)*(a + b + 1)], (4*z*(z - 1))/((1 - 2*z)^(2)))
|
Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z] == (1 - 2*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[1,2]*(a + b + 1), Divide[4*z*(z - 1),(1 - 2*z)^(2)]]
|
Failure | Failure | Successful [Tested: 36] | Failed [3 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 0.5], Rule[z, 0]}
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[b, -0.5], Rule[z, 0]}
... skip entries to safe data |
15.8.E18 | \hyperF@@{a}{b}{\frac{1}{2}(a+b+1)}{z} = \hyperF@@{\frac{1}{2}a}{\frac{1}{2}b}{\frac{1}{2}(a+b+1)}{4z(1-z)} |
|
hypergeom([a, b], [(1)/(2)*(a + b + 1)], z) = hypergeom([(1)/(2)*a, (1)/(2)*b], [(1)/(2)*(a + b + 1)], 4*z*(1 - z))
|
Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z] == Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*b, Divide[1,2]*(a + b + 1), 4*z*(1 - z)]
|
Failure | Failure | Successful [Tested: 36] | Failed [3 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 0.5], Rule[z, 0]}
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[b, -0.5], Rule[z, 0]}
... skip entries to safe data |
15.8.E19 | \hyperF@@{a}{1-a}{c}{z} = (1-2z)^{1-a-c}(1-z)^{c-1}\hyperF@@{\frac{1}{2}(a+c)}{\frac{1}{2}(a+c-1)}{c}{\frac{4z(z-1)}{(1-2z)^{2}}} |
|
hypergeom([a, 1 - a], [c], z) = (1 - 2*z)^(1 - a - c)*(1 - z)^(c - 1)* hypergeom([(1)/(2)*(a + c), (1)/(2)*(a + c - 1)], [c], (4*z*(z - 1))/((1 - 2*z)^(2)))
|
Hypergeometric2F1[a, 1 - a, c, z] == (1 - 2*z)^(1 - a - c)*(1 - z)^(c - 1)* Hypergeometric2F1[Divide[1,2]*(a + c), Divide[1,2]*(a + c - 1), c, Divide[4*z*(z - 1),(1 - 2*z)^(2)]]
|
Failure | Failure | Successful [Tested: 36] | Successful [Tested: 36] |
15.8.E20 | \hyperF@@{a}{1-a}{c}{z} = (1-z)^{c-1}\hyperF@@{\frac{1}{2}(c-a)}{\frac{1}{2}(a+c-1)}{c}{4z(1-z)} |
|
hypergeom([a, 1 - a], [c], z) = (1 - z)^(c - 1)* hypergeom([(1)/(2)*(c - a), (1)/(2)*(a + c - 1)], [c], 4*z*(1 - z)) |
Hypergeometric2F1[a, 1 - a, c, z] == (1 - z)^(c - 1)* Hypergeometric2F1[Divide[1,2]*(c - a), Divide[1,2]*(a + c - 1), c, 4*z*(1 - z)] |
Failure | Failure | Successful [Tested: 36] | Successful [Tested: 36] |
15.8.E21 | \hyperF@@{a}{b}{a-b+1}{z} = \left(1+\sqrt{z}\right)^{-2a}\hyperF@@{a}{a-b+\tfrac{1}{2}}{2a-2b+1}{\frac{4\sqrt{z}}{(1+\sqrt{z})^{2}}} |
hypergeom([a, b], [a - b + 1], z) = (1 +sqrt(z))^(- 2*a)* hypergeom([a, a - b +(1)/(2)], [2*a - 2*b + 1], (4*sqrt(z))/((1 +sqrt(z))^(2))) |
Hypergeometric2F1[a, b, a - b + 1, z] == (1 +Sqrt[z])^(- 2*a)* Hypergeometric2F1[a, a - b +Divide[1,2], 2*a - 2*b + 1, Divide[4*Sqrt[z],(1 +Sqrt[z])^(2)]] |
Failure | Failure | Failed [11 / 36] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = 3/2, z = 1/2} Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -1/2, z = 1/2} ... skip entries to safe data |
Failed [55 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data | |
15.8.E22 | \hyperF@@{a}{b}{\tfrac{1}{2}(a+b+1)}{z} = \left(\frac{\sqrt{1-z^{-1}}-1}{\sqrt{1-z^{-1}}+1}\right)^{a}\hyperF@@{a}{\tfrac{1}{2}(a+b)}{a+b}{\frac{4\sqrt{1-z^{-1}}}{\left(\sqrt{1-z^{-1}}+1\right)^{2}}} |
hypergeom([a, b], [(1)/(2)*(a + b + 1)], z) = ((sqrt(1 - (z)^(- 1))- 1)/(sqrt(1 - (z)^(- 1))+ 1))^(a)* hypergeom([a, (1)/(2)*(a + b)], [a + b], (4*sqrt(1 - (z)^(- 1)))/((sqrt(1 - (z)^(- 1))+ 1)^(2))) |
Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z] == (Divide[Sqrt[1 - (z)^(- 1)]- 1,Sqrt[1 - (z)^(- 1)]+ 1])^(a)* Hypergeometric2F1[a, Divide[1,2]*(a + b), a + b, Divide[4*Sqrt[1 - (z)^(- 1)],(Sqrt[1 - (z)^(- 1)]+ 1)^(2)]] |
Failure | Failure | Error | Failed [36 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, 0]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, 0]} ... skip entries to safe data | |
15.8.E23 | \hyperF@@{a}{1-a}{c}{z} = \left(\sqrt{1-z^{-1}}-1\right)^{1-a}\left(\sqrt{1-z^{-1}}+1\right)^{a-2c+1}\left(1-z^{-1}\right)^{c-1}\hyperF@@{c-a}{c-\tfrac{1}{2}}{2c-1}{\frac{4\sqrt{1-z^{-1}}}{\left(\sqrt{1-z^{-1}}+1\right)^{2}}} |
hypergeom([a, 1 - a], [c], z) = (sqrt(1 - (z)^(- 1))- 1)^(1 - a)*(sqrt(1 - (z)^(- 1))+ 1)^(a - 2*c + 1)*(1 - (z)^(- 1))^(c - 1)* hypergeom([c - a, c -(1)/(2)], [2*c - 1], (4*sqrt(1 - (z)^(- 1)))/((sqrt(1 - (z)^(- 1))+ 1)^(2))) |
Hypergeometric2F1[a, 1 - a, c, z] == (Sqrt[1 - (z)^(- 1)]- 1)^(1 - a)*(Sqrt[1 - (z)^(- 1)]+ 1)^(a - 2*c + 1)*(1 - (z)^(- 1))^(c - 1)* Hypergeometric2F1[c - a, c -Divide[1,2], 2*c - 1, Divide[4*Sqrt[1 - (z)^(- 1)],(Sqrt[1 - (z)^(- 1)]+ 1)^(2)]] |
Failure | Failure | Error | Failed [36 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[z, 0]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[c, 1.5], Rule[z, 0]} ... skip entries to safe data | |
15.8.E24 | \hyperF@@{a}{b}{a-b+1}{z} = (1-z)^{-a}\frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}a-b+1}}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}a-b+\tfrac{1}{2}}{\tfrac{1}{2}}{\left(\frac{z+1}{z-1}\right)^{2}}+(1+z)(1-z)^{-a-1}\frac{\EulerGamma@{a-b+1}\EulerGamma@{-\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}a-b+\tfrac{1}{2}}}\hyperF@@{\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{1}{2}a-b+1}{\tfrac{3}{2}}{\left(\frac{z+1}{z-1}\right)^{2}} |
hypergeom([a, b], [a - b + 1], z) = (1 - z)^(- a)*(GAMMA(a - b + 1)*GAMMA((1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*a - b + 1))*hypergeom([(1)/(2)*a, (1)/(2)*a - b +(1)/(2)], [(1)/(2)], ((z + 1)/(z - 1))^(2))+(1 + z)*(1 - z)^(- a - 1)*(GAMMA(a - b + 1)*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*a - b +(1)/(2)))*hypergeom([(1)/(2)*a +(1)/(2), (1)/(2)*a - b + 1], [(3)/(2)], ((z + 1)/(z - 1))^(2)) |
Hypergeometric2F1[a, b, a - b + 1, z] == (1 - z)^(- a)*Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*a - b + 1]]*Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a - b +Divide[1,2], Divide[1,2], (Divide[z + 1,z - 1])^(2)]+(1 + z)*(1 - z)^(- a - 1)*Divide[Gamma[a - b + 1]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*a - b +Divide[1,2]]]*Hypergeometric2F1[Divide[1,2]*a +Divide[1,2], Divide[1,2]*a - b + 1, Divide[3,2], (Divide[z + 1,z - 1])^(2)] |
Failure | Failure | Error | Skip - No test values generated | |
15.8.E25 | \hyperF@@{a}{b}{\tfrac{1}{2}(a+b+1)}{z} = \frac{\EulerGamma@{\tfrac{1}{2}(a+b+1)}\EulerGamma@{\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}b}{\tfrac{1}{2}}{(1-2z)^{2}}+(1-2z)\frac{\EulerGamma@{\tfrac{1}{2}(a+b+1)}\EulerGamma@{-\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b}}\hyperF@@{\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{3}{2}}{(1-2z)^{2}} |
hypergeom([a, b], [(1)/(2)*(a + b + 1)], z) = (GAMMA((1)/(2)*(a + b + 1))*GAMMA((1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2)))*hypergeom([(1)/(2)*a, (1)/(2)*b], [(1)/(2)], (1 - 2*z)^(2))+(1 - 2*z)*(GAMMA((1)/(2)*(a + b + 1))*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b))*hypergeom([(1)/(2)*a +(1)/(2), (1)/(2)*b +(1)/(2)], [(3)/(2)], (1 - 2*z)^(2)) |
Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z] == Divide[Gamma[Divide[1,2]*(a + b + 1)]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]]*Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*b, Divide[1,2], (1 - 2*z)^(2)]+(1 - 2*z)*Divide[Gamma[Divide[1,2]*(a + b + 1)]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b]]*Hypergeometric2F1[Divide[1,2]*a +Divide[1,2], Divide[1,2]*b +Divide[1,2], Divide[3,2], (1 - 2*z)^(2)] |
Failure | Failure | Error | Skip - No test values generated | |
15.8.E26 | \hyperF@@{a}{1-a}{c}{z} = (1-z)^{c-1}\frac{\EulerGamma@{c}\EulerGamma@{\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}(c-a+1)}\EulerGamma@{\tfrac{1}{2}c+\tfrac{1}{2}a}}\hyperF@@{\tfrac{1}{2}c-\tfrac{1}{2}a}{\tfrac{1}{2}c+\tfrac{1}{2}a-\tfrac{1}{2}}{\tfrac{1}{2}}{(1-2z)^{2}}+(1-2z)(1-z)^{c-1}\frac{\EulerGamma@{c}\EulerGamma@{-\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}c-\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}(c+a-1)}}\hyperF@@{\tfrac{1}{2}c-\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{1}{2}c+\tfrac{1}{2}a}{\tfrac{3}{2}}{(1-2z)^{2}} |
hypergeom([a, 1 - a], [c], z) = (1 - z)^(c - 1)*(GAMMA(c)*GAMMA((1)/(2)))/(GAMMA((1)/(2)*(c - a + 1))*GAMMA((1)/(2)*c +(1)/(2)*a))*hypergeom([(1)/(2)*c -(1)/(2)*a, (1)/(2)*c +(1)/(2)*a -(1)/(2)], [(1)/(2)], (1 - 2*z)^(2))+(1 - 2*z)*(1 - z)^(c - 1)*(GAMMA(c)*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*c -(1)/(2)*a)*GAMMA((1)/(2)*(c + a - 1)))*hypergeom([(1)/(2)*c -(1)/(2)*a +(1)/(2), (1)/(2)*c +(1)/(2)*a], [(3)/(2)], (1 - 2*z)^(2)) |
Hypergeometric2F1[a, 1 - a, c, z] == (1 - z)^(c - 1)*Divide[Gamma[c]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*(c - a + 1)]*Gamma[Divide[1,2]*c +Divide[1,2]*a]]*Hypergeometric2F1[Divide[1,2]*c -Divide[1,2]*a, Divide[1,2]*c +Divide[1,2]*a -Divide[1,2], Divide[1,2], (1 - 2*z)^(2)]+(1 - 2*z)*(1 - z)^(c - 1)*Divide[Gamma[c]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*c -Divide[1,2]*a]*Gamma[Divide[1,2]*(c + a - 1)]]*Hypergeometric2F1[Divide[1,2]*c -Divide[1,2]*a +Divide[1,2], Divide[1,2]*c +Divide[1,2]*a, Divide[3,2], (1 - 2*z)^(2)] |
Failure | Failure | Error | Skip - No test values generated | |
15.8.E27 | \frac{2\EulerGamma@{\tfrac{1}{2}}\EulerGamma@{a+b+\tfrac{1}{2}}}{\EulerGamma@{a+\tfrac{1}{2}}\EulerGamma@{b+\tfrac{1}{2}}}\hyperF@{a}{b}{\tfrac{1}{2}}{z} = \hyperF@{2a}{2b}{a+b+\tfrac{1}{2}}{\tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}}+\hyperF@{2a}{2b}{a+b+\tfrac{1}{2}}{\tfrac{1}{2}+\tfrac{1}{2}\sqrt{z}} |
(2*GAMMA((1)/(2))*GAMMA(a + b +(1)/(2)))/(GAMMA(a +(1)/(2))*GAMMA(b +(1)/(2)))*hypergeom([a, b], [(1)/(2)], z) = hypergeom([2*a, 2*b], [a + b +(1)/(2)], (1)/(2)-(1)/(2)*sqrt(z))+ hypergeom([2*a, 2*b], [a + b +(1)/(2)], (1)/(2)+(1)/(2)*sqrt(z)) |
Divide[2*Gamma[Divide[1,2]]*Gamma[a + b +Divide[1,2]],Gamma[a +Divide[1,2]]*Gamma[b +Divide[1,2]]]*Hypergeometric2F1[a, b, Divide[1,2], z] == Hypergeometric2F1[2*a, 2*b, a + b +Divide[1,2], Divide[1,2]-Divide[1,2]*Sqrt[z]]+ Hypergeometric2F1[2*a, 2*b, a + b +Divide[1,2], Divide[1,2]+Divide[1,2]*Sqrt[z]] |
Failure | Failure | Successful [Tested: 45] | Successful [Tested: 45] | |
15.8.E28 | \frac{2\sqrt{z}\EulerGamma@{-\tfrac{1}{2}}\EulerGamma@{a+b-\tfrac{1}{2}}}{\EulerGamma@{a-\tfrac{1}{2}}\EulerGamma@{b-\tfrac{1}{2}}}\hyperF@{a}{b}{\tfrac{3}{2}}{z} = \hyperF@{2a-1}{2b-1}{a+b-\tfrac{1}{2}}{\tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}}-\hyperF@{2a-1}{2b-1}{a+b-\tfrac{1}{2}}{\tfrac{1}{2}+\tfrac{1}{2}\sqrt{z}} |
(2*sqrt(z)*GAMMA(-(1)/(2))*GAMMA(a + b -(1)/(2)))/(GAMMA(a -(1)/(2))*GAMMA(b -(1)/(2)))*hypergeom([a, b], [(3)/(2)], z) = hypergeom([2*a - 1, 2*b - 1], [a + b -(1)/(2)], (1)/(2)-(1)/(2)*sqrt(z))- hypergeom([2*a - 1, 2*b - 1], [a + b -(1)/(2)], (1)/(2)+(1)/(2)*sqrt(z)) |
Divide[2*Sqrt[z]*Gamma[-Divide[1,2]]*Gamma[a + b -Divide[1,2]],Gamma[a -Divide[1,2]]*Gamma[b -Divide[1,2]]]*Hypergeometric2F1[a, b, Divide[3,2], z] == Hypergeometric2F1[2*a - 1, 2*b - 1, a + b -Divide[1,2], Divide[1,2]-Divide[1,2]*Sqrt[z]]- Hypergeometric2F1[2*a - 1, 2*b - 1, a + b -Divide[1,2], Divide[1,2]+Divide[1,2]*Sqrt[z]] |
Failure | Failure | Error | Skip - No test values generated | |
15.8.E29 | \hyperF@@{a}{\tfrac{1}{3}a+\tfrac{1}{3}}{\tfrac{2}{3}a+\tfrac{2}{3}}{z} = \left(1+\sqrt{z}\right)^{-2a}\*\hyperF@@{a}{\tfrac{2}{3}a+\tfrac{1}{6}}{\tfrac{4}{3}a+\tfrac{1}{3}}{\frac{4\sqrt{z}}{(1+\sqrt{z})^{2}}} |
|
hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z) = (1 +sqrt(z))^(- 2*a)* hypergeom([a, (2)/(3)*a +(1)/(6)], [(4)/(3)*a +(1)/(3)], (4*sqrt(z))/((1 +sqrt(z))^(2))) |
Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z] == (1 +Sqrt[z])^(- 2*a)* Hypergeometric2F1[a, Divide[2,3]*a +Divide[1,6], Divide[4,3]*a +Divide[1,3], Divide[4*Sqrt[z],(1 +Sqrt[z])^(2)]] |
Failure | Failure | Failed [25 / 42] Result: .2121145592-.5120898515*I
Test Values: {a = -3/2, z = 1/2*3^(1/2)+1/2*I} Result: 2.582409423-.3e-9*I
Test Values: {a = -3/2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [10 / 42]
Result: Complex[-0.4773575227812281, -0.2756024942774353]
Test Values: {Rule[a, -1.5], Rule[z, 1.5]} Result: Complex[-1.2380680865464244, -0.7147989430426637]
Test Values: {Rule[a, -1.5], Rule[z, 2]} ... skip entries to safe data |
15.8.E30 | \left(1-\tfrac{1}{2}z\right)^{-a}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{1}{3}a+\tfrac{5}{6}}{\left(\frac{z}{2-z}\right)^{2}} = \hyperF@@{a}{\tfrac{1}{3}a+\tfrac{1}{3}}{\tfrac{2}{3}a+\tfrac{2}{3}}{z} |
|
(1 -(1)/(2)*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(1)/(3)*a +(5)/(6)], ((z)/(2 - z))^(2)) = hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z) |
(1 -Divide[1,2]*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[1,3]*a +Divide[5,6], (Divide[z,2 - z])^(2)] == Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z] |
Failure | Failure | Failed [6 / 42] Result: Float(undefined)+Float(undefined)*I
Test Values: {a = -3/2, z = 2} Result: Float(infinity)+Float(infinity)*I
Test Values: {a = 3/2, z = 2} ... skip entries to safe data |
Failed [6 / 42]
Result: Complex[-0.7147989430426644, 0.7147989430426637]
Test Values: {Rule[a, -1.5], Rule[z, 2]} Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[z, 2]} ... skip entries to safe data |
15.8.E30 | \hyperF@@{a}{\tfrac{1}{3}a+\tfrac{1}{3}}{\tfrac{2}{3}a+\tfrac{2}{3}}{z} = (1+z)^{-a}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{2}{3}a+\tfrac{2}{3}}{\frac{4z}{(1+z)^{2}}} |
|
hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z) = (1 + z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(2)/(3)*a +(2)/(3)], (4*z)/((1 + z)^(2))) |
Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z] == (1 + z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[2,3]*a +Divide[2,3], Divide[4*z,(1 + z)^(2)]] |
Failure | Failure | Failed [30 / 42] Result: .2121145619-.5120898515*I
Test Values: {a = -3/2, z = 1/2*3^(1/2)+1/2*I} Result: 2.582409420-.7e-9*I
Test Values: {a = -3/2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [10 / 42]
Result: Complex[-0.477357522781229, -0.2756024942774353]
Test Values: {Rule[a, -1.5], Rule[z, 1.5]} Result: Complex[-1.238068086546428, -0.7147989430426637]
Test Values: {Rule[a, -1.5], Rule[z, 2]} ... skip entries to safe data |
15.8.E31 | \hyperF@@{3a}{3a+\frac{1}{2}}{4a+\frac{2}{3}}{z} = \left(1-\tfrac{9}{8}z\right)^{-2a}\*\hyperF@@{a}{a+\frac{1}{2}}{2a+\frac{5}{6}}{\frac{27z^{2}(z-1)}{(9z-8)^{2}}} |
|
hypergeom([3*a, 3*a +(1)/(2)], [4*a +(2)/(3)], z) = (1 -(9)/(8)*z)^(- 2*a)* hypergeom([a, a +(1)/(2)], [2*a +(5)/(6)], (27*(z)^(2)*(z - 1))/((9*z - 8)^(2))) |
Hypergeometric2F1[3*a, 3*a +Divide[1,2], 4*a +Divide[2,3], z] == (1 -Divide[9,8]*z)^(- 2*a)* Hypergeometric2F1[a, a +Divide[1,2], 2*a +Divide[5,6], Divide[27*(z)^(2)*(z - 1),(9*z - 8)^(2)]] |
Failure | Failure | Successful [Tested: 6] | Successful [Tested: 6] |
15.8.E32 | \frac{\left(1-z^{3}\right)^{a}}{\left(-z\right)^{3a}}\left(\frac{1}{\EulerGamma@{a+\frac{2}{3}}\EulerGamma@{\frac{2}{3}}}\hyperF@@{a}{a+\frac{1}{3}}{\frac{2}{3}}{z^{-3}}+\frac{e^{\frac{1}{3}\pi\iunit}}{z\EulerGamma@{a}\EulerGamma@{\frac{4}{3}}}\hyperF@@{a+\frac{1}{3}}{a+\frac{2}{3}}{\frac{4}{3}}{z^{-3}}\right) = \frac{3^{\frac{3}{2}a+\frac{1}{2}}e^{\frac{1}{2}a\pi\iunit}\EulerGamma@{a+\frac{1}{3}}(1-\zeta)^{a}}{2\pi\EulerGamma@{2a+\frac{2}{3}}(-\zeta)^{2a}}\hyperF@@{a+\frac{1}{3}}{3a}{2a+\frac{2}{3}}{\zeta^{-1}} |
((1 - (z)^(3))^(a))/((- z)^(3*a))*((1)/(GAMMA(a +(2)/(3))*GAMMA((2)/(3)))*hypergeom([a, a +(1)/(3)], [(2)/(3)], (z)^(- 3))+(exp((1)/(3)*Pi*I))/(z*GAMMA(a)*GAMMA((4)/(3)))*hypergeom([a +(1)/(3), a +(2)/(3)], [(4)/(3)], (z)^(- 3))) = ((3)^((3)/(2)*a +(1)/(2))* exp((1)/(2)*a*Pi*I)*GAMMA(a +(1)/(3))*(1 - zeta)^(a))/(2*Pi*GAMMA(2*a +(2)/(3))*(- zeta)^(2*a))*hypergeom([a +(1)/(3), 3*a], [2*a +(2)/(3)], (zeta)^(- 1)) |
Divide[(1 - (z)^(3))^(a),(- z)^(3*a)]*(Divide[1,Gamma[a +Divide[2,3]]*Gamma[Divide[2,3]]]*Hypergeometric2F1[a, a +Divide[1,3], Divide[2,3], (z)^(- 3)]+Divide[Exp[Divide[1,3]*Pi*I],z*Gamma[a]*Gamma[Divide[4,3]]]*Hypergeometric2F1[a +Divide[1,3], a +Divide[2,3], Divide[4,3], (z)^(- 3)]) == Divide[(3)^(Divide[3,2]*a +Divide[1,2])* Exp[Divide[1,2]*a*Pi*I]*Gamma[a +Divide[1,3]]*(1 - \[Zeta])^(a),2*Pi*Gamma[2*a +Divide[2,3]]*(- \[Zeta])^(2*a)]*Hypergeometric2F1[a +Divide[1,3], 3*a, 2*a +Divide[2,3], \[Zeta]^(- 1)] |
Failure | Failure | Error | Skip - No test values generated | |
15.8.E33 | \hyperF@@{\frac{1}{3}}{\frac{2}{3}}{1}{1-\left(\frac{1-z}{1+2z}\right)^{3}} = (1+2z)\hyperF@@{\frac{1}{3}}{\frac{2}{3}}{1}{z^{3}} |
|
hypergeom([(1)/(3), (2)/(3)], [1], 1 -((1 - z)/(1 + 2*z))^(3)) = (1 + 2*z)*hypergeom([(1)/(3), (2)/(3)], [1], (z)^(3)) |
Hypergeometric2F1[Divide[1,3], Divide[2,3], 1, 1 -(Divide[1 - z,1 + 2*z])^(3)] == (1 + 2*z)*Hypergeometric2F1[Divide[1,3], Divide[2,3], 1, (z)^(3)] |
Failure | Failure | Failed [6 / 7] Result: .2094462e-2-1.732617448*I
Test Values: {z = 1/2*3^(1/2)+1/2*I} Result: -.350667893-11.44453323*I
Test Values: {z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [4 / 7]
Result: Complex[0.23768141357499772, -1.326441364739111]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} Result: Complex[0.2791710117197028, 0.7366165529284218]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]} ... skip entries to safe data |