Hypergeometric Function - 15.10 Hypergeometric Differential Equation
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
15.10.E1 | z(1-z)\deriv[2]{w}{z}+\left(c-(a+b+1)z\right)\deriv{w}{z}-abw = 0 |
|
z*(1 - z)*diff(w, [z$(2)])+(c -(a + b + 1)*z)*diff(w, z)- a*b*w = 0
|
z*(1 - z)*D[w, {z, 2}]+(c -(a + b + 1)*z)*D[w, z]- a*b*w == 0
|
Failure | Failure | Failed [300 / 300] Result: -1.948557159-1.125000000*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: -1.948557159-1.125000000*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.9742785792574935, -0.5624999999999999]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[w, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.9742785792574935, -0.5624999999999999]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[w, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10#Ex1 | f_{1}(z) = \hyperF@@{a}{b}{c}{z} |
|
f[1](z) = hypergeom([a, b], [c], z)
|
Subscript[f, 1][z] == Hypergeometric2F1[a, b, c, z]
|
Failure | Failure | Failed [300 / 300] Result: .6425210462+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I}
Result: -.7235043582+.8440762415*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.2711656082250783, 0.5010855048154755]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.612671959171188, 0.4095791538693659]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10#Ex2 | f_{2}(z) = z^{1-c}\hyperF@@{a-c+1}{b-c+1}{2-c}{z} |
|
f[2](z) = (z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [2 - c], z)
|
Subscript[f, 2][z] == (z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z]
|
Failure | Failure | Failed [300 / 300] Result: .5133103946-.4212876140*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I}
Result: -.8527150098-.7873130176*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.09179462722314002, 0.01730691357980338]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.24971172372296968, -0.07419943736630628]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10.E3 | \Wronskian@{f_{1}(z),f_{2}(z)} = (1-c)z^{-c}(1-z)^{c-a-b-1} |
|
(f[1](z))*diff(f[2](z), z)-diff(f[1](z), z)*(f[2](z)) = (1 - c)*(z)^(- c)*(1 - z)^(c - a - b - 1)
|
Wronskian[{Subscript[f, 1][z], Subscript[f, 2][z]}, z] == (1 - c)*(z)^(- c)*(1 - z)^(c - a - b - 1)
|
Translation Error | Translation Error | - | - |
15.10#Ex3 | f_{1}(z) = \hyperF@@{a}{b}{a+b+1-c}{1-z} |
|
f[1](z) = hypergeom([a, b], [a + b + 1 - c], 1 - z)
|
Subscript[f, 1][z] == Hypergeometric2F1[a, b, a + b + 1 - c, 1 - z]
|
Failure | Failure | Failed [300 / 300] Result: -.1636283687-1.527783493*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I}
Result: -1.529653773-1.893808897*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.9719632229411412, -1.2440609802148728]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[1.6304568719950316, -1.3355673311609824]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10#Ex4 | f_{2}(z) = (1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c-a-b+1}{1-z} |
|
f[2](z) = (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z)
|
Subscript[f, 2][z] == (1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z]
|
Failure | Failure | Failed [300 / 300] Result: .6425210462+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I}
Result: -.7235043582+.8440762415*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.2711656082250783, 0.5010855048154755]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.612671959171188, 0.4095791538693659]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10.E5 | \Wronskian@{f_{1}(z),f_{2}(z)} = (a+b-c)z^{-c}(1-z)^{c-a-b-1} |
|
(f[1](z))*diff(f[2](z), z)-diff(f[1](z), z)*(f[2](z)) = (a + b - c)*(z)^(- c)*(1 - z)^(c - a - b - 1)
|
Wronskian[{Subscript[f, 1][z], Subscript[f, 2][z]}, z] == (a + b - c)*(z)^(- c)*(1 - z)^(c - a - b - 1)
|
Translation Error | Translation Error | - | - |
15.10#Ex5 | f_{1}(z) = z^{-a}\hyperF@@{a}{a-c+1}{a-b+1}{\frac{1}{z}} |
|
f[1](z) = (z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z))
|
Subscript[f, 1][z] == (z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]]
|
Failure | Failure | Failed [299 / 300] Result: .8440762415+.7235043582*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = 1/2*3^(1/2)+1/2*I}
Result: -.5219491629+.3574789546*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[1] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [299 / 300]
Result: Complex[0.40957915386936583, 0.6126719591711881]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.0680728029232561, 0.5211656082250784]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10#Ex6 | f_{2}(z) = z^{-b}\hyperF@@{b}{b-c+1}{b-a+1}{\frac{1}{z}} |
|
f[2](z) = (z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z))
|
Subscript[f, 2][z] == (z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]]
|
Failure | Failure | Failed [299 / 300] Result: .8440762415+.7235043582*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = 1/2*3^(1/2)+1/2*I}
Result: -.5219491629+.3574789546*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, f[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [299 / 300]
Result: Complex[0.40957915386936583, 0.6126719591711881]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.0680728029232561, 0.5211656082250784]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[f, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10.E7 | \Wronskian@{f_{1}(z),f_{2}(z)} = (a-b)z^{-c}(z-1)^{c-a-b-1} |
|
(f[1](z))*diff(f[2](z), z)-diff(f[1](z), z)*(f[2](z)) = (a - b)*(z)^(- c)*(z - 1)^(c - a - b - 1)
|
Wronskian[{Subscript[f, 1][z], Subscript[f, 2][z]}, z] == (a - b)*(z)^(- c)*(z - 1)^(c - a - b - 1)
|
Translation Error | Translation Error | - | - |
15.10.E11 | w_{1}(z) = \hyperF@@{a}{b}{c}{z} |
|
w[1](z) = hypergeom([a, b], [c], z)
|
Subscript[w, 1][z] == Hypergeometric2F1[a, b, c, z]
|
Failure | Failure | Failed [300 / 300] Result: .6425210462+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[1] = 1/2*3^(1/2)+1/2*I}
Result: -.7235043582+.8440762415*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[1] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.2711656082250783, 0.5010855048154755]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.612671959171188, 0.4095791538693659]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10.E11 | \hyperF@@{a}{b}{c}{z} = (1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c}{z} |
|
hypergeom([a, b], [c], z) = (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z)
|
Hypergeometric2F1[a, b, c, z] == (1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c, z]
|
Failure | Successful | Skipped - Because timed out | Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.10.E11 | (1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c}{z} = (1-z)^{-a}\hyperF@@{a}{c-b}{c}{\frac{z}{z-1}} |
|
(1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z) = (1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))
|
(1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c, z] == (1 - z)^(- a)* Hypergeometric2F1[a, c - b, c, Divide[z,z - 1]]
|
Failure | Failure | Skipped - Because timed out | Failed [83 / 300]
Result: Complex[6.853625654927462, -2.5179782304346476*^-15]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 1.5], Rule[z, 1.5]}
Result: Complex[8.642795715636197, -2.185751579730777*^-15]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 1.5], Rule[z, 2]}
... skip entries to safe data |
15.10.E11 | (1-z)^{-a}\hyperF@@{a}{c-b}{c}{\frac{z}{z-1}} = (1-z)^{-b}\hyperF@@{c-a}{b}{c}{\frac{z}{z-1}} |
|
(1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1)) = (1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1))
|
(1 - z)^(- a)* Hypergeometric2F1[a, c - b, c, Divide[z,z - 1]] == (1 - z)^(- b)* Hypergeometric2F1[c - a, b, c, Divide[z,z - 1]]
|
Failure | Failure | Failed [69 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [69 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10.E12 | w_{2}(z) = {z^{1-c}}\hyperF@@{a-c+1}{b-c+1}{2-c}{z} |
|
w[2](z) = (z)^(1 - c)*hypergeom([a - c + 1, b - c + 1], [2 - c], z)
|
Subscript[w, 2][z] == (z)^(1 - c)*Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z]
|
Failure | Failure | Manual Skip! | Failed [300 / 300]
Result: Complex[0.09179462722314002, 0.01730691357980338]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.24971172372296968, -0.07419943736630628]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
15.10.E12 | {z^{1-c}}\hyperF@@{a-c+1}{b-c+1}{2-c}{z} = {z^{1-c}(1-z)^{c-a-b}}\*\hyperF@@{1-a}{1-b}{2-c}{z} |
|
(z)^(1 - c)*hypergeom([a - c + 1, b - c + 1], [2 - c], z) = (z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [2 - c], z)
|
(z)^(1 - c)*Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z] == (z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, 2 - c, z]
|
Failure | Successful | Manual Skip! | Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
15.10.E12 | {z^{1-c}(1-z)^{c-a-b}}\*\hyperF@@{1-a}{1-b}{2-c}{z} = {z^{1-c}(1-z)^{c-a-1}}\*\hyperF@@{a-c+1}{1-b}{2-c}{\frac{z}{z-1}} |
|
(z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [2 - c], z) = (z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([a - c + 1, 1 - b], [2 - c], (z)/(z - 1))
|
(z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, 2 - c, z] == (z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[a - c + 1, 1 - b, 2 - c, Divide[z,z - 1]]
|
Failure | Failure | Manual Skip! | Failed [74 / 300]
Result: Complex[8.881784197001252*^-16, -5.5536036726979585]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, 1.5]}
Result: Complex[1.7763568394002505*^-15, -15.707963267948971]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, 2]}
... skip entries to safe data |
15.10.E12 | {z^{1-c}(1-z)^{c-a-1}}\*\hyperF@@{a-c+1}{1-b}{2-c}{\frac{z}{z-1}} = {z^{1-c}(1-z)^{c-b-1}}\*\hyperF@@{1-a}{b-c+1}{2-c}{\frac{z}{z-1}} |
|
(z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([a - c + 1, 1 - b], [2 - c], (z)/(z - 1)) = (z)^(1 - c)*(1 - z)^(c - b - 1)* hypergeom([1 - a, b - c + 1], [2 - c], (z)/(z - 1))
|
(z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[a - c + 1, 1 - b, 2 - c, Divide[z,z - 1]] == (z)^(1 - c)*(1 - z)^(c - b - 1)* Hypergeometric2F1[1 - a, b - c + 1, 2 - c, Divide[z,z - 1]]
|
Failure | Failure | Manual Skip! | Failed [69 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E13 | w_{3}(z) = \hyperF@@{a}{b}{a+b-c+1}{1-z} |
|
w[3](z) = hypergeom([a, b], [a + b - c + 1], 1 - z) |
Subscript[w, 3][z] == Hypergeometric2F1[a, b, a + b - c + 1, 1 - z] |
Failure | Failure | Failed [300 / 300] Result: -.1636283687-1.527783493*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[3] = 1/2*3^(1/2)+1/2*I} Result: -1.529653773-1.893808897*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[3] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.9719632229411412, -1.2440609802148728]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[1.6304568719950316, -1.3355673311609824]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E13 | \hyperF@@{a}{b}{a+b-c+1}{1-z} = z^{1-c}\hyperF@@{a-c+1}{b-c+1}{a+b-c+1}{1-z} |
|
hypergeom([a, b], [a + b - c + 1], 1 - z) = (z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [a + b - c + 1], 1 - z) |
Hypergeometric2F1[a, b, a + b - c + 1, 1 - z] == (z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, a + b - c + 1, 1 - z] |
Failure | Successful | Skipped - Because timed out | Failed [70 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
15.10.E13 | z^{1-c}\hyperF@@{a-c+1}{b-c+1}{a+b-c+1}{1-z} = z^{-a}\hyperF@@{a}{a-c+1}{a+b-c+1}{1-\frac{1}{z}} |
|
(z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [a + b - c + 1], 1 - z) = (z)^(- a)* hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z)) |
(z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, a + b - c + 1, 1 - z] == (z)^(- a)* Hypergeometric2F1[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]] |
Failure | Failure | Failed [56 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = 1/2*3^(1/2)+1/2*I} Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [57 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E13 | z^{-a}\hyperF@@{a}{a-c+1}{a+b-c+1}{1-\frac{1}{z}} = z^{-b}\hyperF@@{b}{b-c+1}{a+b-c+1}{1-\frac{1}{z}} |
|
(z)^(- a)* hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z)) = (z)^(- b)* hypergeom([b, b - c + 1], [a + b - c + 1], 1 -(1)/(z)) |
(z)^(- a)* Hypergeometric2F1[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]] == (z)^(- b)* Hypergeometric2F1[b, b - c + 1, a + b - c + 1, 1 -Divide[1,z]] |
Failure | Failure | Failed [70 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = 1/2*3^(1/2)+1/2*I} Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -2, z = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [71 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E14 | w_{4}(z) = (1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c-a-b+1}{1-z} |
|
w[4](z) = (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z) |
Subscript[w, 4][z] == (1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z] |
Failure | Failure | Failed [300 / 300] Result: .6425210462+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[4] = 1/2*3^(1/2)+1/2*I} Result: -.7235043582+.8440762415*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[4] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.2711656082250783, 0.5010855048154755]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 4], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.612671959171188, 0.4095791538693659]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 4], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E14 | (1-z)^{c-a-b}\hyperF@@{c-a}{c-b}{c-a-b+1}{1-z} = z^{1-c}(1-z)^{c-a-b}\hyperF@@{1-a}{1-b}{c-a-b+1}{1-z} |
|
(1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z) = (z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [c - a - b + 1], 1 - z) |
(1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z] == (z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, c - a - b + 1, 1 - z] |
Failure | Successful | Skipped - Because timed out | Failed [35 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
15.10.E14 | z^{1-c}(1-z)^{c-a-b}\hyperF@@{1-a}{1-b}{c-a-b+1}{1-z} = z^{a-c}(1-z)^{c-a-b}\hyperF@@{1-a}{c-a}{c-a-b+1}{1-\frac{1}{z}} |
|
(z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [c - a - b + 1], 1 - z) = (z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [c - a - b + 1], 1 -(1)/(z)) |
(z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, c - a - b + 1, 1 - z] == (z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, c - a - b + 1, 1 -Divide[1,z]] |
Failure | Failure | Skipped - Because timed out | Failed [35 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E14 | z^{a-c}(1-z)^{c-a-b}\hyperF@@{1-a}{c-a}{c-a-b+1}{1-\frac{1}{z}} = z^{b-c}(1-z)^{c-a-b}\hyperF@@{1-b}{c-b}{c-a-b+1}{1-\frac{1}{z}} |
|
(z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [c - a - b + 1], 1 -(1)/(z)) = (z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [c - a - b + 1], 1 -(1)/(z)) |
(z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, c - a - b + 1, 1 -Divide[1,z]] == (z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, c - a - b + 1, 1 -Divide[1,z]] |
Failure | Failure | Skipped - Because timed out | Failed [35 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E15 | w_{5}(z) = e^{a\pi\iunit}z^{-a}\*\hyperF@@{a}{a-c+1}{a-b+1}{\frac{1}{z}} |
|
w[5](z) = exp(a*Pi*I)*(z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z)) |
Subscript[w, 5][z] == Exp[a*Pi*I]*(z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]] |
Failure | Failure | Failed [300 / 300] Result: .6425210464+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[5] = 1/2*3^(1/2)+1/2*I} Result: -.7235043580+.8440762414*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[5] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.2711656082250785, 0.5010855048154754]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.6126719591711882, 0.4095791538693657]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E15 | e^{a\pi\iunit}z^{-a}\*\hyperF@@{a}{a-c+1}{a-b+1}{\frac{1}{z}} = e^{(c-b)\pi\iunit}z^{b-c}(1-z)^{c-a-b}\*\hyperF@@{1-b}{c-b}{a-b+1}{\frac{1}{z}} |
|
exp(a*Pi*I)*(z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z)) = exp((c - b)*Pi*I)*(z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [a - b + 1], (1)/(z)) |
Exp[a*Pi*I]*(z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]] == Exp[(c - b)*Pi*I]*(z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, a - b + 1, Divide[1,z]] |
Failure | Failure | Failed [177 / 300] Result: -.2921784397e-9-2.000000000*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2-1/2*I*3^(1/2)} Result: -4.961420107-2.055087494*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [177 / 300]
Result: Complex[-1.139753528477389, -1.1397535284773888]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]} Result: Complex[-3.3917924817064886, -0.8989459473483532]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]} ... skip entries to safe data |
15.10.E15 | e^{(c-b)\pi\iunit}z^{b-c}(1-z)^{c-a-b}\*\hyperF@@{1-b}{c-b}{a-b+1}{\frac{1}{z}} = (1-z)^{-a}\hyperF@@{a}{c-b}{a-b+1}{\frac{1}{1-z}} |
|
exp((c - b)*Pi*I)*(z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [a - b + 1], (1)/(z)) = (1 - z)^(- a)* hypergeom([a, c - b], [a - b + 1], (1)/(1 - z)) |
Exp[(c - b)*Pi*I]*(z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, a - b + 1, Divide[1,z]] == (1 - z)^(- a)* Hypergeometric2F1[a, c - b, a - b + 1, Divide[1,1 - z]] |
Failure | Failure | Failed [151 / 300] Result: -.3698264781e-8+6.010407640*I
Test Values: {a = -3/2, b = -3/2, c = 3/2, z = 1/2} Result: -.1450299914e-9+.7071067812*I
Test Values: {a = -3/2, b = -3/2, c = -1/2, z = 1/2} ... skip entries to safe data |
Failed [151 / 300]
Result: Complex[-7.360626478001693*^-16, 6.0104076400856545]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 1.5], Rule[z, 0.5]} Result: Complex[-1.232595164407831*^-32, 0.7071067811865476]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -0.5], Rule[z, 0.5]} ... skip entries to safe data |
15.10.E15 | (1-z)^{-a}\hyperF@@{a}{c-b}{a-b+1}{\frac{1}{1-z}} = e^{(c-1)\pi\iunit}z^{1-c}(1-z)^{c-a-1}\*\hyperF@@{1-b}{a-c+1}{a-b+1}{\frac{1}{1-z}} |
|
(1 - z)^(- a)* hypergeom([a, c - b], [a - b + 1], (1)/(1 - z)) = exp((c - 1)*Pi*I)*(z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([1 - b, a - c + 1], [a - b + 1], (1)/(1 - z)) |
(1 - z)^(- a)* Hypergeometric2F1[a, c - b, a - b + 1, Divide[1,1 - z]] == Exp[(c - 1)*Pi*I]*(z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[1 - b, a - c + 1, a - b + 1, Divide[1,1 - z]] |
Failure | Failure | Failed [210 / 300] Result: .8062461775e-9+2.000000000*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2-1/2*I*3^(1/2)} Result: 4.961420108+2.055087494*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [210 / 300]
Result: Complex[1.1397535284773888, 1.1397535284773896]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]} Result: Complex[3.391792481706486, 0.8989459473483523]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]} ... skip entries to safe data |
15.10.E16 | w_{6}(z) = e^{b\pi\iunit}z^{-b}\hyperF@@{b}{b-c+1}{b-a+1}{\frac{1}{z}} |
|
w[6](z) = exp(b*Pi*I)*(z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z)) |
Subscript[w, 6][z] == Exp[b*Pi*I]*(z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]] |
Failure | Failure | Failed [300 / 300] Result: .6425210464+1.210101645*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[6] = 1/2*3^(1/2)+1/2*I} Result: -.7235043580+.8440762414*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2*3^(1/2)+1/2*I, w[6] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.2711656082250785, 0.5010855048154754]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 6], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.6126719591711882, 0.4095791538693657]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[w, 6], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
15.10.E16 | e^{b\pi\iunit}z^{-b}\hyperF@@{b}{b-c+1}{b-a+1}{\frac{1}{z}} = e^{(c-a)\pi\iunit}z^{a-c}(1-z)^{c-a-b}\*\hyperF@@{1-a}{c-a}{b-a+1}{\frac{1}{z}} |
|
exp(b*Pi*I)*(z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z)) = exp((c - a)*Pi*I)*(z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [b - a + 1], (1)/(z)) |
Exp[b*Pi*I]*(z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]] == Exp[(c - a)*Pi*I]*(z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, b - a + 1, Divide[1,z]] |
Failure | Failure | Skipped - Because timed out | Failed [125 / 300]
Result: Complex[-1.139753528477389, -1.1397535284773888]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]} Result: Complex[-3.3917924817064886, -0.8989459473483532]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]} ... skip entries to safe data |
15.10.E16 | e^{(c-a)\pi\iunit}z^{a-c}(1-z)^{c-a-b}\*\hyperF@@{1-a}{c-a}{b-a+1}{\frac{1}{z}} = (1-z)^{-b}\hyperF@@{b}{c-a}{b-a+1}{\frac{1}{1-z}} |
|
exp((c - a)*Pi*I)*(z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [b - a + 1], (1)/(z)) = (1 - z)^(- b)* hypergeom([b, c - a], [b - a + 1], (1)/(1 - z)) |
Exp[(c - a)*Pi*I]*(z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, b - a + 1, Divide[1,z]] == (1 - z)^(- b)* Hypergeometric2F1[b, c - a, b - a + 1, Divide[1,1 - z]] |
Failure | Failure | Skipped - Because timed out | Failed [94 / 300]
Result: Complex[-7.360626478001693*^-16, 6.0104076400856545]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, 1.5], Rule[z, 0.5]} Result: Complex[-1.232595164407831*^-32, 0.7071067811865476]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -0.5], Rule[z, 0.5]} ... skip entries to safe data |
15.10.E16 | (1-z)^{-b}\hyperF@@{b}{c-a}{b-a+1}{\frac{1}{1-z}} = e^{(c-1)\pi\iunit}z^{1-c}(1-z)^{c-b-1}\*\hyperF@@{1-a}{b-c+1}{b-a+1}{\frac{1}{1-z}} |
|
(1 - z)^(- b)* hypergeom([b, c - a], [b - a + 1], (1)/(1 - z)) = exp((c - 1)*Pi*I)*(z)^(1 - c)*(1 - z)^(c - b - 1)* hypergeom([1 - a, b - c + 1], [b - a + 1], (1)/(1 - z)) |
(1 - z)^(- b)* Hypergeometric2F1[b, c - a, b - a + 1, Divide[1,1 - z]] == Exp[(c - 1)*Pi*I]*(z)^(1 - c)*(1 - z)^(c - b - 1)* Hypergeometric2F1[1 - a, b - c + 1, b - a + 1, Divide[1,1 - z]] |
Failure | Failure | Skipped - Because timed out | Failed [166 / 300]
Result: Complex[1.1397535284773888, 1.1397535284773896]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]} Result: Complex[3.391792481706486, 0.8989459473483523]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]} ... skip entries to safe data |
15.10.E17 | w_{3}(z) = \frac{\EulerGamma@{1-c}\EulerGamma@{a+b-c+1}}{\EulerGamma@{a-c+1}\EulerGamma@{b-c+1}}w_{1}(z)+\frac{\EulerGamma@{c-1}\EulerGamma@{a+b-c+1}}{\EulerGamma@{a}\EulerGamma@{b}}w_{2}(z) |
w[3](z) = (GAMMA(1 - c)*GAMMA(a + b - c + 1))/(GAMMA(a - c + 1)*GAMMA(b - c + 1))*w[1](z)+(GAMMA(c - 1)*GAMMA(a + b - c + 1))/(GAMMA(a)*GAMMA(b))*w[2](z) |
Subscript[w, 3][z] == Divide[Gamma[1 - c]*Gamma[a + b - c + 1],Gamma[a - c + 1]*Gamma[b - c + 1]]*Subscript[w, 1][z]+Divide[Gamma[c - 1]*Gamma[a + b - c + 1],Gamma[a]*Gamma[b]]*Subscript[w, 2][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E18 | w_{4}(z) = \frac{\EulerGamma@{1-c}\EulerGamma@{c-a-b+1}}{\EulerGamma@{1-a}\EulerGamma@{1-b}}w_{1}(z)+\frac{\EulerGamma@{c-1}\EulerGamma@{c-a-b+1}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}w_{2}(z) |
w[4](z) = (GAMMA(1 - c)*GAMMA(c - a - b + 1))/(GAMMA(1 - a)*GAMMA(1 - b))*w[1](z)+(GAMMA(c - 1)*GAMMA(c - a - b + 1))/(GAMMA(c - a)*GAMMA(c - b))*w[2](z) |
Subscript[w, 4][z] == Divide[Gamma[1 - c]*Gamma[c - a - b + 1],Gamma[1 - a]*Gamma[1 - b]]*Subscript[w, 1][z]+Divide[Gamma[c - 1]*Gamma[c - a - b + 1],Gamma[c - a]*Gamma[c - b]]*Subscript[w, 2][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E19 | w_{5}(z) = \frac{\EulerGamma@{1-c}\EulerGamma@{a-b+1}}{\EulerGamma@{a-c+1}\EulerGamma@{1-b}}w_{1}(z)+e^{(c-1)\pi\iunit}\frac{\EulerGamma@{c-1}\EulerGamma@{a-b+1}}{\EulerGamma@{a}\EulerGamma@{c-b}}w_{2}(z) |
w[5](z) = (GAMMA(1 - c)*GAMMA(a - b + 1))/(GAMMA(a - c + 1)*GAMMA(1 - b))*w[1](z)+ exp((c - 1)*Pi*I)*(GAMMA(c - 1)*GAMMA(a - b + 1))/(GAMMA(a)*GAMMA(c - b))*w[2](z) |
Subscript[w, 5][z] == Divide[Gamma[1 - c]*Gamma[a - b + 1],Gamma[a - c + 1]*Gamma[1 - b]]*Subscript[w, 1][z]+ Exp[(c - 1)*Pi*I]*Divide[Gamma[c - 1]*Gamma[a - b + 1],Gamma[a]*Gamma[c - b]]*Subscript[w, 2][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E20 | w_{6}(z) = \frac{\EulerGamma@{1-c}\EulerGamma@{b-a+1}}{\EulerGamma@{b-c+1}\EulerGamma@{1-a}}w_{1}(z)+e^{(c-1)\pi\iunit}\frac{\EulerGamma@{c-1}\EulerGamma@{b-a+1}}{\EulerGamma@{b}\EulerGamma@{c-a}}w_{2}(z) |
w[6](z) = (GAMMA(1 - c)*GAMMA(b - a + 1))/(GAMMA(b - c + 1)*GAMMA(1 - a))*w[1](z)+ exp((c - 1)*Pi*I)*(GAMMA(c - 1)*GAMMA(b - a + 1))/(GAMMA(b)*GAMMA(c - a))*w[2](z) |
Subscript[w, 6][z] == Divide[Gamma[1 - c]*Gamma[b - a + 1],Gamma[b - c + 1]*Gamma[1 - a]]*Subscript[w, 1][z]+ Exp[(c - 1)*Pi*I]*Divide[Gamma[c - 1]*Gamma[b - a + 1],Gamma[b]*Gamma[c - a]]*Subscript[w, 2][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E21 | w_{1}(z) = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}w_{3}(z)+\frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}w_{4}(z) |
w[1](z) = (GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))*w[3](z)+(GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))*w[4](z) |
Subscript[w, 1][z] == Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]*Subscript[w, 3][z]+Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]*Subscript[w, 4][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E22 | w_{2}(z) = \frac{\EulerGamma@{2-c}\EulerGamma@{c-a-b}}{\EulerGamma@{1-a}\EulerGamma@{1-b}}w_{3}(z)+\frac{\EulerGamma@{2-c}\EulerGamma@{a+b-c}}{\EulerGamma@{a-c+1}\EulerGamma@{b-c+1}}w_{4}(z) |
w[2](z) = (GAMMA(2 - c)*GAMMA(c - a - b))/(GAMMA(1 - a)*GAMMA(1 - b))*w[3](z)+(GAMMA(2 - c)*GAMMA(a + b - c))/(GAMMA(a - c + 1)*GAMMA(b - c + 1))*w[4](z) |
Subscript[w, 2][z] == Divide[Gamma[2 - c]*Gamma[c - a - b],Gamma[1 - a]*Gamma[1 - b]]*Subscript[w, 3][z]+Divide[Gamma[2 - c]*Gamma[a + b - c],Gamma[a - c + 1]*Gamma[b - c + 1]]*Subscript[w, 4][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E23 | w_{5}(z) = e^{a\pi\iunit}\frac{\EulerGamma@{a-b+1}\EulerGamma@{c-a-b}}{\EulerGamma@{1-b}\EulerGamma@{c-b}}w_{3}(z)+e^{(c-b)\pi\iunit}\frac{\EulerGamma@{a-b+1}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{a-c+1}}w_{4}(z) |
w[5](z) = exp(a*Pi*I)*(GAMMA(a - b + 1)*GAMMA(c - a - b))/(GAMMA(1 - b)*GAMMA(c - b))*w[3](z)+ exp((c - b)*Pi*I)*(GAMMA(a - b + 1)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(a - c + 1))*w[4](z) |
Subscript[w, 5][z] == Exp[a*Pi*I]*Divide[Gamma[a - b + 1]*Gamma[c - a - b],Gamma[1 - b]*Gamma[c - b]]*Subscript[w, 3][z]+ Exp[(c - b)*Pi*I]*Divide[Gamma[a - b + 1]*Gamma[a + b - c],Gamma[a]*Gamma[a - c + 1]]*Subscript[w, 4][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E24 | w_{6}(z) = e^{b\pi\iunit}\frac{\EulerGamma@{b-a+1}\EulerGamma@{c-a-b}}{\EulerGamma@{1-a}\EulerGamma@{c-a}}w_{3}(z)+e^{(c-a)\pi\iunit}\frac{\EulerGamma@{b-a+1}\EulerGamma@{a+b-c}}{\EulerGamma@{b}\EulerGamma@{b-c+1}}w_{4}(z) |
w[6](z) = exp(b*Pi*I)*(GAMMA(b - a + 1)*GAMMA(c - a - b))/(GAMMA(1 - a)*GAMMA(c - a))*w[3](z)+ exp((c - a)*Pi*I)*(GAMMA(b - a + 1)*GAMMA(a + b - c))/(GAMMA(b)*GAMMA(b - c + 1))*w[4](z) |
Subscript[w, 6][z] == Exp[b*Pi*I]*Divide[Gamma[b - a + 1]*Gamma[c - a - b],Gamma[1 - a]*Gamma[c - a]]*Subscript[w, 3][z]+ Exp[(c - a)*Pi*I]*Divide[Gamma[b - a + 1]*Gamma[a + b - c],Gamma[b]*Gamma[b - c + 1]]*Subscript[w, 4][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E25 | w_{1}(z) = \frac{\EulerGamma@{c}\EulerGamma@{b-a}}{\EulerGamma@{b}\EulerGamma@{c-a}}w_{5}(z)+\frac{\EulerGamma@{c}\EulerGamma@{a-b}}{\EulerGamma@{a}\EulerGamma@{c-b}}w_{6}(z) |
w[1](z) = (GAMMA(c)*GAMMA(b - a))/(GAMMA(b)*GAMMA(c - a))*w[5](z)+(GAMMA(c)*GAMMA(a - b))/(GAMMA(a)*GAMMA(c - b))*w[6](z) |
Subscript[w, 1][z] == Divide[Gamma[c]*Gamma[b - a],Gamma[b]*Gamma[c - a]]*Subscript[w, 5][z]+Divide[Gamma[c]*Gamma[a - b],Gamma[a]*Gamma[c - b]]*Subscript[w, 6][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E26 | w_{2}(z) = e^{(1-c)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{b-a}}{\EulerGamma@{1-a}\EulerGamma@{b-c+1}}w_{5}(z)+e^{(1-c)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{a-b}}{\EulerGamma@{1-b}\EulerGamma@{a-c+1}}w_{6}(z) |
w[2](z) = exp((1 - c)*Pi*I)*(GAMMA(2 - c)*GAMMA(b - a))/(GAMMA(1 - a)*GAMMA(b - c + 1))*w[5](z)+ exp((1 - c)*Pi*I)*(GAMMA(2 - c)*GAMMA(a - b))/(GAMMA(1 - b)*GAMMA(a - c + 1))*w[6](z) |
Subscript[w, 2][z] == Exp[(1 - c)*Pi*I]*Divide[Gamma[2 - c]*Gamma[b - a],Gamma[1 - a]*Gamma[b - c + 1]]*Subscript[w, 5][z]+ Exp[(1 - c)*Pi*I]*Divide[Gamma[2 - c]*Gamma[a - b],Gamma[1 - b]*Gamma[a - c + 1]]*Subscript[w, 6][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E27 | w_{3}(z) = e^{-a\pi\iunit}\frac{\EulerGamma@{a+b-c+1}\EulerGamma@{b-a}}{\EulerGamma@{b}\EulerGamma@{b-c+1}}w_{5}(z)+e^{-b\pi\iunit}\frac{\EulerGamma@{a+b-c+1}\EulerGamma@{a-b}}{\EulerGamma@{a}\EulerGamma@{a-c+1}}w_{6}(z) |
w[3](z) = exp(- a*Pi*I)*(GAMMA(a + b - c + 1)*GAMMA(b - a))/(GAMMA(b)*GAMMA(b - c + 1))*w[5](z)+ exp(- b*Pi*I)*(GAMMA(a + b - c + 1)*GAMMA(a - b))/(GAMMA(a)*GAMMA(a - c + 1))*w[6](z) |
Subscript[w, 3][z] == Exp[- a*Pi*I]*Divide[Gamma[a + b - c + 1]*Gamma[b - a],Gamma[b]*Gamma[b - c + 1]]*Subscript[w, 5][z]+ Exp[- b*Pi*I]*Divide[Gamma[a + b - c + 1]*Gamma[a - b],Gamma[a]*Gamma[a - c + 1]]*Subscript[w, 6][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E28 | w_{4}(z) = e^{(b-c)\pi\iunit}\frac{\EulerGamma@{c-a-b+1}\EulerGamma@{b-a}}{\EulerGamma@{1-a}\EulerGamma@{c-a}}w_{5}(z)+e^{(a-c)\pi\iunit}\frac{\EulerGamma@{c-a-b+1}\EulerGamma@{a-b}}{\EulerGamma@{1-b}\EulerGamma@{c-b}}w_{6}(z) |
w[4](z) = exp((b - c)*Pi*I)*(GAMMA(c - a - b + 1)*GAMMA(b - a))/(GAMMA(1 - a)*GAMMA(c - a))*w[5](z)+ exp((a - c)*Pi*I)*(GAMMA(c - a - b + 1)*GAMMA(a - b))/(GAMMA(1 - b)*GAMMA(c - b))*w[6](z) |
Subscript[w, 4][z] == Exp[(b - c)*Pi*I]*Divide[Gamma[c - a - b + 1]*Gamma[b - a],Gamma[1 - a]*Gamma[c - a]]*Subscript[w, 5][z]+ Exp[(a - c)*Pi*I]*Divide[Gamma[c - a - b + 1]*Gamma[a - b],Gamma[1 - b]*Gamma[c - b]]*Subscript[w, 6][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E29 | w_{1}(z) = e^{b\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{a-c+1}}{\EulerGamma@{a+b-c+1}\EulerGamma@{c-b}}w_{3}(z)+e^{(b-c)\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{a-c+1}}{\EulerGamma@{b}\EulerGamma@{a-b+1}}w_{5}(z) |
w[1](z) = exp(b*Pi*I)*(GAMMA(c)*GAMMA(a - c + 1))/(GAMMA(a + b - c + 1)*GAMMA(c - b))*w[3](z)+ exp((b - c)*Pi*I)*(GAMMA(c)*GAMMA(a - c + 1))/(GAMMA(b)*GAMMA(a - b + 1))*w[5](z) |
Subscript[w, 1][z] == Exp[b*Pi*I]*Divide[Gamma[c]*Gamma[a - c + 1],Gamma[a + b - c + 1]*Gamma[c - b]]*Subscript[w, 3][z]+ Exp[(b - c)*Pi*I]*Divide[Gamma[c]*Gamma[a - c + 1],Gamma[b]*Gamma[a - b + 1]]*Subscript[w, 5][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E30 | w_{1}(z) = e^{a\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{b-c+1}}{\EulerGamma@{a+b-c+1}\EulerGamma@{c-a}}w_{3}(z)+e^{(a-c)\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{b-c+1}}{\EulerGamma@{a}\EulerGamma@{b-a+1}}w_{6}(z) |
w[1](z) = exp(a*Pi*I)*(GAMMA(c)*GAMMA(b - c + 1))/(GAMMA(a + b - c + 1)*GAMMA(c - a))*w[3](z)+ exp((a - c)*Pi*I)*(GAMMA(c)*GAMMA(b - c + 1))/(GAMMA(a)*GAMMA(b - a + 1))*w[6](z) |
Subscript[w, 1][z] == Exp[a*Pi*I]*Divide[Gamma[c]*Gamma[b - c + 1],Gamma[a + b - c + 1]*Gamma[c - a]]*Subscript[w, 3][z]+ Exp[(a - c)*Pi*I]*Divide[Gamma[c]*Gamma[b - c + 1],Gamma[a]*Gamma[b - a + 1]]*Subscript[w, 6][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E31 | w_{2}(z) = e^{(b-c+1)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{a}}{\EulerGamma@{a+b-c+1}\EulerGamma@{1-b}}w_{3}(z)+e^{(b-c)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{a}}{\EulerGamma@{a-b+1}\EulerGamma@{b-c+1}}w_{5}(z) |
w[2](z) = exp((b - c + 1)*Pi*I)*(GAMMA(2 - c)*GAMMA(a))/(GAMMA(a + b - c + 1)*GAMMA(1 - b))*w[3](z)+ exp((b - c)*Pi*I)*(GAMMA(2 - c)*GAMMA(a))/(GAMMA(a - b + 1)*GAMMA(b - c + 1))*w[5](z) |
Subscript[w, 2][z] == Exp[(b - c + 1)*Pi*I]*Divide[Gamma[2 - c]*Gamma[a],Gamma[a + b - c + 1]*Gamma[1 - b]]*Subscript[w, 3][z]+ Exp[(b - c)*Pi*I]*Divide[Gamma[2 - c]*Gamma[a],Gamma[a - b + 1]*Gamma[b - c + 1]]*Subscript[w, 5][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E32 | w_{2}(z) = e^{(a-c+1)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{b}}{\EulerGamma@{a+b-c+1}\EulerGamma@{1-a}}w_{3}(z)+e^{(a-c)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{b}}{\EulerGamma@{b-a+1}\EulerGamma@{a-c+1}}w_{6}(z) |
w[2](z) = exp((a - c + 1)*Pi*I)*(GAMMA(2 - c)*GAMMA(b))/(GAMMA(a + b - c + 1)*GAMMA(1 - a))*w[3](z)+ exp((a - c)*Pi*I)*(GAMMA(2 - c)*GAMMA(b))/(GAMMA(b - a + 1)*GAMMA(a - c + 1))*w[6](z) |
Subscript[w, 2][z] == Exp[(a - c + 1)*Pi*I]*Divide[Gamma[2 - c]*Gamma[b],Gamma[a + b - c + 1]*Gamma[1 - a]]*Subscript[w, 3][z]+ Exp[(a - c)*Pi*I]*Divide[Gamma[2 - c]*Gamma[b],Gamma[b - a + 1]*Gamma[a - c + 1]]*Subscript[w, 6][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E33 | w_{1}(z) = e^{(c-a)\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{1-b}}{\EulerGamma@{a}\EulerGamma@{c-a-b+1}}w_{4}(z)+e^{-a\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{1-b}}{\EulerGamma@{a-b+1}\EulerGamma@{c-a}}w_{5}(z) |
w[1](z) = exp((c - a)*Pi*I)*(GAMMA(c)*GAMMA(1 - b))/(GAMMA(a)*GAMMA(c - a - b + 1))*w[4](z)+ exp(- a*Pi*I)*(GAMMA(c)*GAMMA(1 - b))/(GAMMA(a - b + 1)*GAMMA(c - a))*w[5](z) |
Subscript[w, 1][z] == Exp[(c - a)*Pi*I]*Divide[Gamma[c]*Gamma[1 - b],Gamma[a]*Gamma[c - a - b + 1]]*Subscript[w, 4][z]+ Exp[- a*Pi*I]*Divide[Gamma[c]*Gamma[1 - b],Gamma[a - b + 1]*Gamma[c - a]]*Subscript[w, 5][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E34 | w_{1}(z) = e^{(c-b)\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{1-a}}{\EulerGamma@{b}\EulerGamma@{c-a-b+1}}w_{4}(z)+e^{-b\pi\iunit}\frac{\EulerGamma@{c}\EulerGamma@{1-a}}{\EulerGamma@{b-a+1}\EulerGamma@{c-b}}w_{6}(z) |
w[1](z) = exp((c - b)*Pi*I)*(GAMMA(c)*GAMMA(1 - a))/(GAMMA(b)*GAMMA(c - a - b + 1))*w[4](z)+ exp(- b*Pi*I)*(GAMMA(c)*GAMMA(1 - a))/(GAMMA(b - a + 1)*GAMMA(c - b))*w[6](z) |
Subscript[w, 1][z] == Exp[(c - b)*Pi*I]*Divide[Gamma[c]*Gamma[1 - a],Gamma[b]*Gamma[c - a - b + 1]]*Subscript[w, 4][z]+ Exp[- b*Pi*I]*Divide[Gamma[c]*Gamma[1 - a],Gamma[b - a + 1]*Gamma[c - b]]*Subscript[w, 6][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E35 | w_{2}(z) = e^{(1-a)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{c-b}}{\EulerGamma@{a-c+1}\EulerGamma@{c-a-b+1}}w_{4}(z)+e^{-a\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{c-b}}{\EulerGamma@{a-b+1}\EulerGamma@{1-a}}w_{5}(z) |
w[2](z) = exp((1 - a)*Pi*I)*(GAMMA(2 - c)*GAMMA(c - b))/(GAMMA(a - c + 1)*GAMMA(c - a - b + 1))*w[4](z)+ exp(- a*Pi*I)*(GAMMA(2 - c)*GAMMA(c - b))/(GAMMA(a - b + 1)*GAMMA(1 - a))*w[5](z) |
Subscript[w, 2][z] == Exp[(1 - a)*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - b],Gamma[a - c + 1]*Gamma[c - a - b + 1]]*Subscript[w, 4][z]+ Exp[- a*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - b],Gamma[a - b + 1]*Gamma[1 - a]]*Subscript[w, 5][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out | |
15.10.E36 | w_{2}(z) = e^{(1-b)\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{c-a}}{\EulerGamma@{b-c+1}\EulerGamma@{c-a-b+1}}w_{4}(z)+e^{-b\pi\iunit}\frac{\EulerGamma@{2-c}\EulerGamma@{c-a}}{\EulerGamma@{b-a+1}\EulerGamma@{1-b}}w_{6}(z) |
w[2](z) = exp((1 - b)*Pi*I)*(GAMMA(2 - c)*GAMMA(c - a))/(GAMMA(b - c + 1)*GAMMA(c - a - b + 1))*w[4](z)+ exp(- b*Pi*I)*(GAMMA(2 - c)*GAMMA(c - a))/(GAMMA(b - a + 1)*GAMMA(1 - b))*w[6](z) |
Subscript[w, 2][z] == Exp[(1 - b)*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - a],Gamma[b - c + 1]*Gamma[c - a - b + 1]]*Subscript[w, 4][z]+ Exp[- b*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - a],Gamma[b - a + 1]*Gamma[1 - b]]*Subscript[w, 6][z] |
Failure | Failure | Manual Skip! | Skipped - Because timed out |