Generalized Hypergeometric Functions & Meijer G -Function - 17.2 Calculus
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
17.2.E2 | \qPochhammer{a}{q}{-n} = \frac{1}{\qPochhammer{aq^{-n}}{q}{n}} |
|
QPochhammer(a, q, - n) = (1)/(QPochhammer(a*(q)^(- n), q, n))
|
QPochhammer[a, q, - n] == Divide[1,QPochhammer[a*(q)^(- n), q, n]]
|
Successful | Failure | - | Failed [18 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[q, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[q, -1.5]}
... skip entries to safe data |
17.2.E2 | \frac{1}{\qPochhammer{aq^{-n}}{q}{n}} = \frac{(-q/a)^{n}q^{\binom{n}{2}}}{\qPochhammer{q/a}{q}{n}} |
|
(1)/(QPochhammer(a*(q)^(- n), q, n)) = ((- q/a)^(n)* (q)^(binomial(n,2)))/(QPochhammer(q/a, q, n))
|
Divide[1,QPochhammer[a*(q)^(- n), q, n]] == Divide[(- q/a)^(n)* (q)^(Binomial[n,2]),QPochhammer[q/a, q, n]]
|
Successful | Failure | - | Failed [18 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 1], Rule[q, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[n, 2], Rule[q, -1.5]}
... skip entries to safe data |
17.2.E3 | \qPochhammer{a}{q}{\nu} = \prod_{j=0}^{\infty}\left(\frac{1-aq^{j}}{1-aq^{\nu+j}}\right) |
|
QPochhammer(a, q, nu) = product((1 - a*(q)^(j))/(1 - a*(q)^(nu + j)), j = 0..infinity)
|
QPochhammer[a, q, \[Nu]] == Product[Divide[1 - a*(q)^(j),1 - a*(q)^(\[Nu]+ j)], {j, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Failed [33 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
17.2.E4 | \qPochhammer{a}{q}{\infty} = \prod_{j=0}^{\infty}(1-aq^{j}) |
|
QPochhammer(a, q, infinity) = product(1 - a*(q)^(j), j = 0..infinity)
|
QPochhammer[a, q, Infinity] == Product[1 - a*(q)^(j), {j, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Error | Failed [48 / 60]
Result: Plus[Times[-1.0, QPochhammer[-1.5, Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[-1.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[a, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
17.2.E7 | \qPochhammer{a}{q^{-1}}{n} = \qPochhammer{a^{-1}}{q}{n}(-a)^{n}q^{-\binom{n}{2}} |
|
QPochhammer(a, (q)^(- 1), n) = QPochhammer((a)^(- 1), q, n)*(- a)^(n)* (q)^(-binomial(n,2))
|
QPochhammer[a, (q)^(- 1), n] == QPochhammer[(a)^(- 1), q, n]*(- a)^(n)* (q)^(-Binomial[n,2])
|
Successful | Failure | - | Successful [Tested: 180] |
17.2.E8 | \frac{\qPochhammer{a}{q^{-1}}{n}}{\qPochhammer{b}{q^{-1}}{n}} = \frac{\qPochhammer{a^{-1}}{q}{n}}{\qPochhammer{b^{-1}}{q}{n}}\left(\frac{a}{b}\right)^{n} |
|
(QPochhammer(a, (q)^(- 1), n))/(QPochhammer(b, (q)^(- 1), n)) = (QPochhammer((a)^(- 1), q, n))/(QPochhammer((b)^(- 1), q, n))*((a)/(b))^(n)
|
Divide[QPochhammer[a, (q)^(- 1), n],QPochhammer[b, (q)^(- 1), n]] == Divide[QPochhammer[(a)^(- 1), q, n],QPochhammer[(b)^(- 1), q, n]]*(Divide[a,b])^(n)
|
Successful | Failure | - | Failed [20 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[q, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 3], Rule[q, -1.5]}
... skip entries to safe data |
17.2.E9 | \qPochhammer{a}{q}{n} = \qPochhammer{q^{1-n}/a}{q}{n}(-a)^{n}q^{\binom{n}{2}} |
|
QPochhammer(a, q, n) = QPochhammer((q)^(1 - n)/a, q, n)*(- a)^(n)* (q)^(binomial(n,2))
|
QPochhammer[a, q, n] == QPochhammer[(q)^(1 - n)/a, q, n]*(- a)^(n)* (q)^(Binomial[n,2])
|
Successful | Failure | - | Successful [Tested: 180] |
17.2.E10 | \frac{\qPochhammer{a}{q}{n}}{\qPochhammer{b}{q}{n}} = \frac{\qPochhammer{q^{1-n}/a}{q}{n}}{\qPochhammer{q^{1-n}/b}{q}{n}}\left(\frac{a}{b}\right)^{n} |
|
(QPochhammer(a, q, n))/(QPochhammer(b, q, n)) = (QPochhammer((q)^(1 - n)/a, q, n))/(QPochhammer((q)^(1 - n)/b, q, n))*((a)/(b))^(n)
|
Divide[QPochhammer[a, q, n],QPochhammer[b, q, n]] == Divide[QPochhammer[(q)^(1 - n)/a, q, n],QPochhammer[(q)^(1 - n)/b, q, n]]*(Divide[a,b])^(n)
|
Successful | Failure | - | Failed [12 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[n, 2], Rule[q, -2]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[n, 3], Rule[q, -2]}
... skip entries to safe data |
17.2.E11 | \qPochhammer{aq^{-n}}{q}{n} = \qPochhammer{q/a}{q}{n}\left(-\frac{a}{q}\right)^{n}q^{-\binom{n}{2}} |
|
QPochhammer(a*(q)^(- n), q, n) = QPochhammer(q/a, q, n)*(-(a)/(q))^(n)* (q)^(-binomial(n,2))
|
QPochhammer[a*(q)^(- n), q, n] == QPochhammer[q/a, q, n]*(-Divide[a,q])^(n)* (q)^(-Binomial[n,2])
|
Successful | Failure | - | Successful [Tested: 180] |
17.2.E12 | \frac{\qPochhammer{aq^{-n}}{q}{n}}{\qPochhammer{bq^{-n}}{q}{n}} = \frac{\qPochhammer{q/a}{q}{n}}{\qPochhammer{q/b}{q}{n}}\left(\frac{a}{b}\right)^{n} |
|
(QPochhammer(a*(q)^(- n), q, n))/(QPochhammer(b*(q)^(- n), q, n)) = (QPochhammer(q/a, q, n))/(QPochhammer(q/b, q, n))*((a)/(b))^(n)
|
Divide[QPochhammer[a*(q)^(- n), q, n],QPochhammer[b*(q)^(- n), q, n]] == Divide[QPochhammer[q/a, q, n],QPochhammer[q/b, q, n]]*(Divide[a,b])^(n)
|
Successful | Failure | - | Failed [30 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 1], Rule[q, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 2], Rule[q, -1.5]}
... skip entries to safe data |
17.2.E13 | \qPochhammer{a}{q}{n-k} = \frac{\qPochhammer{a}{q}{n}}{\qPochhammer{q^{1-n}/a}{q}{k}}\left(-\frac{q}{a}\right)^{k}q^{\binom{k}{2}-nk} |
|
QPochhammer(a, q, n - k) = (QPochhammer(a, q, n))/(QPochhammer((q)^(1 - n)/a, q, k))*(-(q)/(a))^(k)* (q)^(binomial(k,2)- n*k)
|
QPochhammer[a, q, n - k] == Divide[QPochhammer[a, q, n],QPochhammer[(q)^(1 - n)/a, q, k]]*(-Divide[q,a])^(k)* (q)^(Binomial[k,2]- n*k)
|
Successful | Failure | - | Failed [14 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[n, 1], Rule[q, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[n, 1], Rule[q, -1.5]}
... skip entries to safe data |
17.2.E14 | \frac{\qPochhammer{a}{q}{n-k}}{\qPochhammer{b}{q}{n-k}} = \frac{\qPochhammer{a}{q}{n}}{\qPochhammer{b}{q}{n}}\frac{\qPochhammer{q^{1-n}/b}{q}{k}}{\qPochhammer{q^{1-n}/a}{q}{k}}\left(\frac{b}{a}\right)^{k} |
|
(QPochhammer(a, q, n - k))/(QPochhammer(b, q, n - k)) = (QPochhammer(a, q, n))/(QPochhammer(b, q, n))*(QPochhammer((q)^(1 - n)/b, q, k))/(QPochhammer((q)^(1 - n)/a, q, k))*((b)/(a))^(k)
|
Divide[QPochhammer[a, q, n - k],QPochhammer[b, q, n - k]] == Divide[QPochhammer[a, q, n],QPochhammer[b, q, n]]*Divide[QPochhammer[(q)^(1 - n)/b, q, k],QPochhammer[(q)^(1 - n)/a, q, k]]*(Divide[b,a])^(k)
|
Successful | Failure | - | Failed [15 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 2], Rule[n, 1], Rule[q, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 3], Rule[n, 1], Rule[q, -1.5]}
... skip entries to safe data |
17.2.E15 | \qPochhammer{aq^{-n}}{q}{k} = \frac{\qPochhammer{a}{q}{k}\qPochhammer{q/a}{q}{n}}{\qPochhammer{q^{1-k}/a}{q}{n}}q^{-nk} |
|
QPochhammer(a*(q)^(- n), q, k) = (QPochhammer(a, q, k)*QPochhammer(q/a, q, n))/(QPochhammer((q)^(1 - k)/a, q, n))*(q)^(- n*k)
|
QPochhammer[a*(q)^(- n), q, k] == Divide[QPochhammer[a, q, k]*QPochhammer[q/a, q, n],QPochhammer[(q)^(1 - k)/a, q, n]]*(q)^(- n*k)
|
Successful | Failure | - | Failed [14 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[n, 2], Rule[q, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[n, 3], Rule[q, -1.5]}
... skip entries to safe data |
17.2.E16 | \qPochhammer{aq^{-n}}{q}{n-k} = \frac{\qPochhammer{q/a}{q}{n}}{\qPochhammer{q/a}{q}{k}}\left(-\frac{a}{q}\right)^{n-k}q^{\binom{k}{2}-\binom{n}{2}} |
|
QPochhammer(a*(q)^(- n), q, n - k) = (QPochhammer(q/a, q, n))/(QPochhammer(q/a, q, k))*(-(a)/(q))^(n - k)* (q)^(binomial(k,2)-binomial(n,2))
|
QPochhammer[a*(q)^(- n), q, n - k] == Divide[QPochhammer[q/a, q, n],QPochhammer[q/a, q, k]]*(-Divide[a,q])^(n - k)* (q)^(Binomial[k,2]-Binomial[n,2])
|
Successful | Failure | - | Failed [27 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[n, 1], Rule[q, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[n, 2], Rule[q, -1.5]}
... skip entries to safe data |
17.2.E17 | \qPochhammer{aq^{n}}{q}{k} = \frac{\qPochhammer{a}{q}{k}\qPochhammer{aq^{k}}{q}{n}}{\qPochhammer{a}{q}{n}} |
|
QPochhammer(a*(q)^(n), q, k) = (QPochhammer(a, q, k)*QPochhammer(a*(q)^(k), q, n))/(QPochhammer(a, q, n))
|
QPochhammer[a*(q)^(n), q, k] == Divide[QPochhammer[a, q, k]*QPochhammer[a*(q)^(k), q, n],QPochhammer[a, q, n]]
|
Successful | Failure | - | Failed [6 / 300]
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[k, 1], Rule[n, 2], Rule[q, -2]}
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[k, 1], Rule[n, 3], Rule[q, -2]}
... skip entries to safe data |
17.2.E18 | \qPochhammer{aq^{k}}{q}{n-k} = \frac{\qPochhammer{a}{q}{n}}{\qPochhammer{a}{q}{k}} |
|
QPochhammer(a*(q)^(k), q, n - k) = (QPochhammer(a, q, n))/(QPochhammer(a, q, k))
|
QPochhammer[a*(q)^(k), q, n - k] == Divide[QPochhammer[a, q, n],QPochhammer[a, q, k]]
|
Successful | Failure | - | Failed [6 / 300]
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[k, 2], Rule[n, 1], Rule[q, -2]}
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[k, 2], Rule[n, 2], Rule[q, -2]}
... skip entries to safe data |
17.2.E19 | \qPochhammer{a}{q}{2n} = \qmultiPochhammersym{a,aq}{q^{2}}{n} |
|
Error
|
QPochhammer[a, q, 2*n] == Product[QPochhammer[Part[{a , a*q},i],(q)^(2),n],{i,1,Length[{a , a*q}]}]
|
Missing Macro Error | Failure | - | Successful [Tested: 180] |
17.2.E21 | \qPochhammer{a^{2}}{q^{2}}{n} = \qPochhammer{a}{q}{n}\qPochhammer{-a}{q}{n} |
|
QPochhammer((a)^(2), (q)^(2), n) = QPochhammer(a, q, n)*QPochhammer(- a, q, n)
|
QPochhammer[(a)^(2), (q)^(2), n] == QPochhammer[a, q, n]*QPochhammer[- a, q, n]
|
Successful | Successful | - | Successful [Tested: 180] |
17.2.E22 | \frac{\qmultiPochhammersym{qa^{\frac{1}{2}},-qa^{\frac{1}{2}}}{q}{n}}{\qmultiPochhammersym{a^{\frac{1}{2}},-a^{\frac{1}{2}}}{q}{n}} = \frac{\qPochhammer{aq^{2}}{q^{2}}{n}}{\qPochhammer{a}{q^{2}}{n}} |
|
Error
|
Divide[Product[QPochhammer[Part[{q*(a)^(Divide[1,2]), - q*(a)^(Divide[1,2])},i],q,n],{i,1,Length[{q*(a)^(Divide[1,2]), - q*(a)^(Divide[1,2])}]}],Product[QPochhammer[Part[{(a)^(Divide[1,2]), - (a)^(Divide[1,2])},i],q,n],{i,1,Length[{(a)^(Divide[1,2]), - (a)^(Divide[1,2])}]}]] == Divide[QPochhammer[a*(q)^(2), (q)^(2), n],QPochhammer[a, (q)^(2), n]]
|
Missing Macro Error | Successful | - | Successful [Tested: 180] |
17.2.E22 | \frac{\qPochhammer{aq^{2}}{q^{2}}{n}}{\qPochhammer{a}{q^{2}}{n}} = \frac{1-aq^{2n}}{1-a} |
|
(QPochhammer(a*(q)^(2), (q)^(2), n))/(QPochhammer(a, (q)^(2), n)) = (1 - a*(q)^(2*n))/(1 - a)
|
Divide[QPochhammer[a*(q)^(2), (q)^(2), n],QPochhammer[a, (q)^(2), n]] == Divide[1 - a*(q)^(2*n),1 - a]
|
Successful | Failure | - | Successful [Tested: 180] |
17.2.E23 | \frac{\qPochhammer{aq^{k}}{q^{k}}{n}}{\qPochhammer{a}{q^{k}}{n}} = \frac{1-aq^{kn}}{1-a} |
|
(QPochhammer(a*(q)^(k), (q)^(k), n))/(QPochhammer(a, (q)^(k), n)) = (1 - a*(q)^(k*n))/(1 - a)
|
Divide[QPochhammer[a*(q)^(k), (q)^(k), n],QPochhammer[a, (q)^(k), n]] == Divide[1 - a*(q)^(k*n),1 - a]
|
Error | Failure | - | Failed [2 / 300]
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[k, 1], Rule[n, 2], Rule[q, -2]}
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[k, 1], Rule[n, 3], Rule[q, -2]}
|
17.2.E24 | \lim_{\tau\to 0}\qPochhammer{a/\tau}{q}{n}\tau^{n} = \lim_{\sigma\to\infty}\qPochhammer{a\sigma}{q}{n}\sigma^{-n} |
|
limit(QPochhammer(a/tau, q, n)*(tau)^(n), tau = 0) = limit(QPochhammer(a*sigma, q, n)*(sigma)^(- n), sigma = infinity)
|
Limit[QPochhammer[a/\[Tau], q, n]*\[Tau]^(n), \[Tau] -> 0, GenerateConditions->None] == Limit[QPochhammer[a*\[Sigma], q, n]*\[Sigma]^(- n), \[Sigma] -> Infinity, GenerateConditions->None]
|
Failure | Failure | Error | Successful [Tested: 180] |
17.2.E24 | \lim_{\sigma\to\infty}\qPochhammer{a\sigma}{q}{n}\sigma^{-n} = (-a)^{n}q^{\binom{n}{2}} |
|
limit(QPochhammer(a*sigma, q, n)*(sigma)^(- n), sigma = infinity) = (- a)^(n)* (q)^(binomial(n,2))
|
Limit[QPochhammer[a*\[Sigma], q, n]*\[Sigma]^(- n), \[Sigma] -> Infinity, GenerateConditions->None] == (- a)^(n)* (q)^(Binomial[n,2])
|
Failure | Failure | Error | Successful [Tested: 180] |
17.2.E25 | \lim_{\tau\to 0}\frac{\qPochhammer{a/\tau}{q}{n}}{\qPochhammer{b/\tau}{q}{n}} = \lim_{\sigma\to\infty}\frac{\qPochhammer{a\sigma}{q}{n}}{\qPochhammer{b\sigma}{q}{n}} |
|
limit((QPochhammer(a/tau, q, n))/(QPochhammer(b/tau, q, n)), tau = 0) = limit((QPochhammer(a*sigma, q, n))/(QPochhammer(b*sigma, q, n)), sigma = infinity)
|
Limit[Divide[QPochhammer[a/\[Tau], q, n],QPochhammer[b/\[Tau], q, n]], \[Tau] -> 0, GenerateConditions->None] == Limit[Divide[QPochhammer[a*\[Sigma], q, n],QPochhammer[b*\[Sigma], q, n]], \[Sigma] -> Infinity, GenerateConditions->None]
|
Failure | Failure | Error | Successful [Tested: 300] |
17.2.E25 | \lim_{\sigma\to\infty}\frac{\qPochhammer{a\sigma}{q}{n}}{\qPochhammer{b\sigma}{q}{n}} = \left(\frac{a}{b}\right)^{n} |
|
limit((QPochhammer(a*sigma, q, n))/(QPochhammer(b*sigma, q, n)), sigma = infinity) = ((a)/(b))^(n) |
Limit[Divide[QPochhammer[a*\[Sigma], q, n],QPochhammer[b*\[Sigma], q, n]], \[Sigma] -> Infinity, GenerateConditions->None] == (Divide[a,b])^(n) |
Failure | Failure | Error | Successful [Tested: 300] |
17.2.E26 | \lim_{\tau\to 0}\frac{\qPochhammer{a/\tau}{q}{n}\qPochhammer{b/\tau}{q}{n}}{\qPochhammer{c/\tau^{2}}{q}{n}} = (-1)^{n}\left(\frac{ab}{c}\right)^{n}q^{\binom{n}{2}} |
|
limit((QPochhammer(a/tau, q, n)*QPochhammer(b/tau, q, n))/(QPochhammer(c/(tau)^(2), q, n)), tau = 0) = (- 1)^(n)*((a*b)/(c))^(n)* (q)^(binomial(n,2)) |
Limit[Divide[QPochhammer[a/\[Tau], q, n]*QPochhammer[b/\[Tau], q, n],QPochhammer[c/\[Tau]^(2), q, n]], \[Tau] -> 0, GenerateConditions->None] == (- 1)^(n)*(Divide[a*b,c])^(n)* (q)^(Binomial[n,2]) |
Error | Failure | - | Successful [Tested: 300] |
17.2.E27 | \qbinom{n}{m}{q} = \frac{\qPochhammer{q}{q}{n}}{\qPochhammer{q}{q}{m}\qPochhammer{q}{q}{n-m}}\\ |
|
QBinomial(n, m, q) = (QPochhammer(q, q, n))/(QPochhammer(q, q, m)*QPochhammer(q, q, n - m)) |
QBinomial[n,m,q] == Divide[QPochhammer[q, q, n],QPochhammer[q, q, m]*QPochhammer[q, q, n - m]] |
Successful | Failure | - | Failed [1 / 90]
Result: Complex[-0.058394160583941646, 0.1605839416058394]
Test Values: {Rule[m, 3], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
17.2.E27 | \frac{\qPochhammer{q}{q}{n}}{\qPochhammer{q}{q}{m}\qPochhammer{q}{q}{n-m}}\\ = \frac{\qPochhammer{q^{-n}}{q}{m}(-1)^{m}q^{nm-\binom{m}{2}}}{\qPochhammer{q}{q}{m}} |
|
(QPochhammer(q, q, n))/(QPochhammer(q, q, m)*QPochhammer(q, q, n - m)) = (QPochhammer((q)^(- n), q, m)*(- 1)^(m)* (q)^(n*m -binomial(m,2)))/(QPochhammer(q, q, m)) |
Divide[QPochhammer[q, q, n],QPochhammer[q, q, m]*QPochhammer[q, q, n - m]] == Divide[QPochhammer[(q)^(- n), q, m]*(- 1)^(m)* (q)^(n*m -Binomial[m,2]),QPochhammer[q, q, m]] |
Successful | Failure | - | Failed [3 / 90]
Result: Complex[0.11678832116788332, -0.3211678832116788]
Test Values: {Rule[m, 3], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[1.0, 0.0]
Test Values: {Rule[m, 3], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
17.2.E28 | \lim_{q\to 1}\qbinom{n}{m}{q} = \binom{n}{m} |
|
limit(QBinomial(n, m, q), q = 1) = binomial(n,m) |
Limit[QBinomial[n,m,q], q -> 1, GenerateConditions->None] == Binomial[n,m] |
Failure | Aborted | Error | Skipped - Because timed out |
17.2.E28 | \binom{n}{m} = \frac{n!}{m!(n-m)!} |
|
binomial(n,m) = (factorial(n))/(factorial(m)*factorial(n - m)) |
Binomial[n,m] == Divide[(n)!,(m)!*(n - m)!] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 9] |
17.2.E29 | \qbinom{m+n}{m}{q} = \frac{\qPochhammer{q^{n+1}}{q}{m}}{\qPochhammer{q}{q}{m}} |
|
QBinomial(m + n, m, q) = (QPochhammer((q)^(n + 1), q, m))/(QPochhammer(q, q, m)) |
QBinomial[m + n,m,q] == Divide[QPochhammer[(q)^(n + 1), q, m],QPochhammer[q, q, m]] |
Successful | Failure | - | Failed [3 / 90]
Result: Complex[0.9416058394160581, 0.1605839416058394]
Test Values: {Rule[m, 3], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: Complex[1.0, 0.0]
Test Values: {Rule[m, 3], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
17.2.E30 | \qbinom{-n}{m}{q} = \qbinom{m+n-1}{m}{q}(-1)^{m}q^{-mn-\binom{m}{2}} |
|
QBinomial(- n, m, q) = QBinomial(m + n - 1, m, q)*(- 1)^(m)* (q)^(- m*n -binomial(m,2)) |
QBinomial[- n,m,q] == QBinomial[m + n - 1,m,q]*(- 1)^(m)* (q)^(- m*n -Binomial[m,2]) |
Failure | Failure | Error | Failed [84 / 90]
Result: Complex[0.7320508075688774, 0.0]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-2.3660254037844384, -1.3660254037844386]
Test Values: {Rule[m, 1], Rule[n, 3], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
17.2.E31 | \qbinom{n}{m}{q} = \qbinom{n-1}{m-1}{q}+q^{m}\qbinom{n-1}{m}{q} |
|
QBinomial(n, m, q) = QBinomial(n - 1, m - 1, q)+ (q)^(m)* QBinomial(n - 1, m, q) |
QBinomial[n,m,q] == QBinomial[n - 1,m - 1,q]+ (q)^(m)* QBinomial[n - 1,m,q] |
Successful | Failure | - | Successful [Tested: 90] |
17.2.E32 | \qbinom{n}{m}{q} = \qbinom{n-1}{m}{q}+q^{n-m}\qbinom{n-1}{m-1}{q} |
|
QBinomial(n, m, q) = QBinomial(n - 1, m, q)+ (q)^(n - m)* QBinomial(n - 1, m - 1, q) |
QBinomial[n,m,q] == QBinomial[n - 1,m,q]+ (q)^(n - m)* QBinomial[n - 1,m - 1,q] |
Successful | Failure | - | Successful [Tested: 90] |
17.2.E33 | \lim_{n\to\infty}\qbinom{n}{m}{q} = \frac{1}{\qPochhammer{q}{q}{m}} |
|
limit(QBinomial(n, m, q), n = infinity) = (1)/(QPochhammer(q, q, m)) |
Limit[QBinomial[n,m,q], n -> Infinity, GenerateConditions->None] == Divide[1,QPochhammer[q, q, m]] |
Failure | Failure | Error | Failed [24 / 30]
Result: Plus[Complex[-0.5, -1.866025403784439], Times[Complex[-0.5, -1.866025403784439], Plus[-1.0, Power[2.718281828459045, Times[Complex[0.0, 2.0], Interval[{-2.2250738585072014*^-308, 3.1415926535897936}]]]]]]
Test Values: {Rule[m, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[1.3660254037844395, -1.3660254037844388], Times[Complex[0.5000000000000009, -1.866025403784439], Plus[-1.0, Power[2.718281828459045, Times[Complex[0.0, 2.0], Interval[{-2.2250738585072014*^-308, 3.1415926535897936}]]]], Plus[Complex[0.8660254037844387, 0.49999999999999994], Power[2.718281828459045, Times[Complex[0.0, 2.0], Interval[{-2.2250738585072014*^-308, 3.1415926535897936}]]]]]]
Test Values: {Rule[m, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
17.2.E34 | \lim_{n\to\infty}\qbinom{rn+u}{sn+t}{q} = \frac{1}{\qPochhammer{q}{q}{\infty}} |
|
limit(QBinomial(r*n + u, sn(+)*t, q), n = infinity) = (1)/(QPochhammer(q, q, infinity)) |
Limit[QBinomial[r*n + u,sn[+]*t,q], n -> Infinity, GenerateConditions->None] == Divide[1,QPochhammer[q, q, Infinity]] |
Error | Failure | Skip - symbolical successful subtest | Error |
17.2.E34 | \frac{1}{\qPochhammer{q}{q}{\infty}} = \prod_{j=1}^{\infty}\frac{1}{(1-q^{j})} |
|
(1)/(QPochhammer(q, q, infinity)) = product((1)/(1 - (q)^(j)), j = 1..infinity) |
Divide[1,QPochhammer[q, q, Infinity]] == Product[Divide[1,1 - (q)^(j)], {j, 1, Infinity}, GenerateConditions->None] |
Failure | Failure | Error | Failed [7 / 10]
Result: Plus[Times[-1.0, Power[QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]], -1]], Power[QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Times[-1.0, Power[QPochhammer[Complex[0.5000000000000001, -0.8660254037844386], Complex[0.5000000000000001, -0.8660254037844386]], -1]], Power[QPochhammer[Complex[0.5000000000000001, -0.8660254037844386], Complex[0.5000000000000001, -0.8660254037844386], DirectedInfinity[1]], -1]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]} ... skip entries to safe data |
17.2.E35 | \sum_{j=0}^{n}\qbinom{n}{j}{q}(-z)^{j}q^{\binom{j}{2}} = \qPochhammer{z}{q}{n} |
|
sum(QBinomial(n, j, q)*(- z)^(j)* (q)^(binomial(j,2)), j = 0..n) = QPochhammer(z, q, n) |
Sum[QBinomial[n,j,q]*(- z)^(j)* (q)^(Binomial[j,2]), {j, 0, n}, GenerateConditions->None] == QPochhammer[z, q, n] |
Failure | Successful | Error | Successful [Tested: 210] |
17.2.E36 | \sum_{j=0}^{n}\binom{n}{j}(-z)^{j} = (1-z)^{n} |
|
sum(binomial(n,j)*(- z)^(j), j = 0..n) = (1 - z)^(n) |
Sum[Binomial[n,j]*(- z)^(j), {j, 0, n}, GenerateConditions->None] == (1 - z)^(n) |
Successful | Successful | - | Successful [Tested: 21] |
17.2.E37 | \sum_{n=0}^{\infty}\frac{\qPochhammer{a}{q}{n}}{\qPochhammer{q}{q}{n}}z^{n} = \frac{\qPochhammer{az}{q}{\infty}}{\qPochhammer{z}{q}{\infty}} |
|
sum((QPochhammer(a, q, n))/(QPochhammer(q, q, n))*(z)^(n), n = 0..infinity) = (QPochhammer(a*z, q, infinity))/(QPochhammer(z, q, infinity)) |
Sum[Divide[QPochhammer[a, q, n],QPochhammer[q, q, n]]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[QPochhammer[a*z, q, Infinity],QPochhammer[z, q, Infinity]] |
Failure | Failure | Error | Failed [240 / 300]
Result: Plus[Times[QPochhammer[Complex[-1.299038105676658, -0.7499999999999999], Complex[0.8660254037844387, 0.49999999999999994]], Power[QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]], -1]], Times[-1.0, QPochhammer[Complex[-1.299038105676658, -0.7499999999999999], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], Power[QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1]]]
Test Values: {Rule[a, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Times[Power[QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994]], -1], QPochhammer[Complex[0.7499999999999997, -1.299038105676658], Complex[0.8660254037844387, 0.49999999999999994]]], Times[-1.0, Power[QPochhammer[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[Complex[0.7499999999999997, -1.299038105676658], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]]
Test Values: {Rule[a, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
17.2.E38 | \sum_{n=0}^{\infty}\qbinom{n+m}{n}{q}z^{n} = \frac{1}{\qPochhammer{z}{q}{m+1}} |
|
sum(QBinomial(n + m, n, q)*(z)^(n), n = 0..infinity) = (1)/(QPochhammer(z, q, m + 1)) |
Sum[QBinomial[n + m,n,q]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[z, q, m + 1]] |
Failure | Aborted | Error | Skipped - Because timed out |
17.2.E39 | \sum_{j=0}^{n}\qbinom{n}{j}{q^{2}}q^{j} = \qPochhammer{-q}{q}{n} |
|
sum(QBinomial(n, j, (q)^(2))*(q)^(j), j = 0..n) = QPochhammer(- q, q, n) |
Sum[QBinomial[n,j,(q)^(2)]*(q)^(j), {j, 0, n}, GenerateConditions->None] == QPochhammer[- q, q, n] |
Failure | Aborted | Error | Successful [Tested: 30] |
17.2.E40 | \sum_{j=0}^{2n}(-1)^{j}\qbinom{2n}{j}{q} = \qPochhammer{q}{q^{2}}{n} |
|
sum((- 1)^(j)* QBinomial(2*n, j, q), j = 0..2*n) = QPochhammer(q, (q)^(2), n) |
Sum[(- 1)^(j)* QBinomial[2*n,j,q], {j, 0, 2*n}, GenerateConditions->None] == QPochhammer[q, (q)^(2), n] |
Failure | Successful | Error | Successful [Tested: 30] |