q -Hypergeometric and Related Functions - 17.5 Functions

From testwiki
Revision as of 11:42, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
17.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qgenhyperphi{0}{0}@{-}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}}}
\qgenhyperphi{0}{0}@{-}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < 1}
Error
QHypergeometricPFQ[{-},{-},q,z] == Sum[Divide[(- 1)^(n)* (q)^(Binomial[n,2])* (z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure Skip - symbolical successful subtest Error
17.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{z}{q}{\infty}}
\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binom{n}{2}}z^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{z}{q}{\infty}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < 1}
sum(((- 1)^(n)* (q)^(binomial(n,2))* (z)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = QPochhammer(z, q, infinity)
Sum[Divide[(- 1)^(n)* (q)^(Binomial[n,2])* (z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == QPochhammer[z, q, Infinity]
Failure Failure Error
Failed [8 / 10]
Result: Plus[QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994]], Times[-1.0, QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, 0.5]}

Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, 0.5]}

... skip entries to safe data
17.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qgenhyperphi{1}{0}@{a}{-}{q}{z} = \frac{\qPochhammer{az}{q}{\infty}}{\qPochhammer{z}{q}{\infty}}}
\qgenhyperphi{1}{0}@{a}{-}{q}{z} = \frac{\qPochhammer{az}{q}{\infty}}{\qPochhammer{z}{q}{\infty}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < 1}
Error
QHypergeometricPFQ[{a},{-},q,z] == Divide[QPochhammer[a*z, q, Infinity],QPochhammer[z, q, Infinity]]
Missing Macro Error Failure - Error
17.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qgenhyperphi{1}{0}@{q^{-n}}{-}{q}{z} = \qPochhammer{zq^{-n}}{q}{n}}
\qgenhyperphi{1}{0}@{q^{-n}}{-}{q}{z} = \qPochhammer{zq^{-n}}{q}{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
QHypergeometricPFQ[{(q)^(- n)},{-},q,z] == QPochhammer[z*(q)^(- n), q, n]
Missing Macro Error Failure - Error
17.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qgenhyperphi{1}{0}@{0}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}}}
\qgenhyperphi{1}{0}@{0}{-}{q}{z} = \sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < 1}
Error
QHypergeometricPFQ[{0},{-},q,z] == Sum[Divide[(z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure Skip - symbolical successful subtest Error
17.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{z}{q}{\infty}}}
\sum_{n=0}^{\infty}\frac{z^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{z}{q}{\infty}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < 1}
sum(((z)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = (1)/(QPochhammer(z, q, infinity))
Sum[Divide[(z)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[z, q, Infinity]]
Failure Failure Error
Failed [8 / 10]
Result: Plus[QHypergeometricPFQ[{0.0}
Test Values: {}, Complex[0.8660254037844387, 0.49999999999999994], 0.5], Times[-1.0, Power[QPochhammer[0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, 0.5]}

Result: QHypergeometricPFQ[{0.0}
Test Values: {}, Complex[-0.4999999999999998, 0.8660254037844387], 0.5], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, 0.5]}

... skip entries to safe data
17.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qgenhyperphi{1}{1}@@{a}{c}{q}{c/a} = \frac{\qPochhammer{c/a}{q}{\infty}}{\qPochhammer{c}{q}{\infty}}}
\qgenhyperphi{1}{1}@@{a}{c}{q}{c/a} = \frac{\qPochhammer{c/a}{q}{\infty}}{\qPochhammer{c}{q}{\infty}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |c| < |a|}
Error
QHypergeometricPFQ[{a},{c},q,c/a] == Divide[QPochhammer[c/a, q, Infinity],QPochhammer[c, q, Infinity]]
Missing Macro Error Failure -
Failed [96 / 120]
Result: Plus[QHypergeometricPFQ[{-1.5}
Test Values: {-0.5}, Complex[0.8660254037844387, 0.49999999999999994], 0.3333333333333333], Times[-1.0, Power[QPochhammer[-0.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[0.3333333333333333, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]], {Rule[a, -1.5], Rule[c, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[c, -0.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data