Orthogonal Polynomials - 18.20 Hahn Class: Explicit Representations

From testwiki
Revision as of 11:47, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.20.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CharlierpolyC{n}@{x}{a} = \genhyperF{2}{0}@@{-n,-x}{-}{-a^{-1}}}
\CharlierpolyC{n}@{x}{a} = \genhyperF{2}{0}@@{-n,-x}{-}{-a^{-1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
HypergeometricPFQ[{-(n), -(x)}, {}, -Divide[1,a]] == HypergeometricPFQ[{- n , - x}, {-}, - (a)^(- 1)]
Missing Macro Error Missing Macro Error - -
18.20.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}} = \frac{\iunit^{n}\Pochhammersym{a+\conj{a}}{n}\Pochhammersym{a+\conj{b}}{n}}{n!}\*\genhyperF{3}{2}@@{-n,n+2\realpart@{a+b}-1,a+\iunit x}{a+\conj{a},a+\conj{b}}{1}}
\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}} = \frac{\iunit^{n}\Pochhammersym{a+\conj{a}}{n}\Pochhammersym{a+\conj{b}}{n}}{n!}\*\genhyperF{3}{2}@@{-n,n+2\realpart@{a+b}-1,a+\iunit x}{a+\conj{a},a+\conj{b}}{1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
I^(n)*Divide[Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[a + b] - 1, a + I*(x)}, {a + Conjugate[a], a + Conjugate[b]}, 1] == Divide[(I)^(n)* Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n],(n)!]* HypergeometricPFQ[{- n , n + 2*Re[a + b]- 1 , a + I*x}, {a + Conjugate[a], a + Conjugate[b]}, 1]
Missing Macro Error Missing Macro Error - -