Orthogonal Polynomials - 18.27 -Hahn Class

From testwiki
Revision as of 11:47, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.27.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A(x)p_{n}(qx)+B(x)p_{n}(x)+C(x)p_{n}(q^{-1}x) = \lambda_{n}p_{n}(x)}
A(x)p_{n}(qx)+B(x)p_{n}(x)+C(x)p_{n}(q^{-1}x) = \lambda_{n}p_{n}(x)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
A(x)* p[n](q*x)+ B(x)* p[n](x)+ C(x)* p[n]((q)^(- 1)* x) = lambda[n]*p[n](x)
A[x]* Subscript[p, n][q*x]+ B[x]* Subscript[p, n][x]+ C[x]* Subscript[p, n][(q)^(- 1)* x] == Subscript[\[Lambda], n]*Subscript[p, n][x]
Skipped - no semantic math Skipped - no semantic math - -
18.27.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle v_{x} = \frac{(a^{-1}x,c^{-1}x;q)_{\infty}}{(x,bc^{-1}x;q)_{\infty}}}
v_{x} = \frac{(a^{-1}x,c^{-1}x;q)_{\infty}}{(x,bc^{-1}x;q)_{\infty}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < a, a < q^{-1}, 0 < b, b < q^{-1}, c < 0}
v[x] = ((a)^(- 1)* x , (c)^(- 1)* x ; q[infinity])/(x , b*(c)^(- 1)* x ; q[infinity])
Subscript[v, x] == Divide[Subscript[(a)^(- 1)* x , (c)^(- 1)* x ; q, Infinity],Subscript[x , b*(c)^(- 1)* x ; q, Infinity]]
Skipped - no semantic math Skipped - no semantic math - -
18.27.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle v_{x} = \frac{(qx/c,-qx/d;q)_{\infty}}{(q^{\alpha+1}x/c,-q^{\beta+1}x/d;q)_{\infty}}}
v_{x} = \frac{(qx/c,-qx/d;q)_{\infty}}{(q^{\alpha+1}x/c,-q^{\beta+1}x/d;q)_{\infty}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha > -1, \beta > -1, c > 0, d > 0}
v[x] = (q*x/c , - q*x/d ; q[infinity])/((q)^(alpha + 1)* x/c , - (q)^(beta + 1)* x/d ; q[infinity])
Subscript[v, x] == Divide[Subscript[q*x/c , - q*x/d ; q, Infinity],Subscript[(q)^(\[Alpha]+ 1)* x/c , - (q)^(\[Beta]+ 1)* x/d ; q, Infinity]]
Skipped - no semantic math Skipped - no semantic math - -
18.27.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qPochhammer{q}{q}{n}\sum_{\ell=0}^{\floor{n/2}}\frac{(-1)^{\ell}q^{\ell(\ell-1)}x^{n-2\ell}}{\qPochhammer{q^{2}}{q^{2}}{\ell}\qPochhammer{q}{q}{n-2\ell}} = x^{n}\qgenhyperphi{2}{0}@@{q^{-n},q^{-n+1}}{-}{q^{2}}{x^{-2}q^{2n-1}}}
\qPochhammer{q}{q}{n}\sum_{\ell=0}^{\floor{n/2}}\frac{(-1)^{\ell}q^{\ell(\ell-1)}x^{n-2\ell}}{\qPochhammer{q^{2}}{q^{2}}{\ell}\qPochhammer{q}{q}{n-2\ell}} = x^{n}\qgenhyperphi{2}{0}@@{q^{-n},q^{-n+1}}{-}{q^{2}}{x^{-2}q^{2n-1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
QPochhammer[q, q, n]*Sum[Divide[(- 1)^\[ScriptL]* (q)^(\[ScriptL]*(\[ScriptL]- 1))* (x)^(n - 2*\[ScriptL]),QPochhammer[(q)^(2), (q)^(2), \[ScriptL]]*QPochhammer[q, q, n - 2*\[ScriptL]]], {\[ScriptL], 0, Floor[n/2]}, GenerateConditions->None] == (x)^(n)* QHypergeometricPFQ[{(q)^(- n), (q)^(- n + 1)},{-},(q)^(2),(x)^(- 2)* (q)^(2*n - 1)]
Missing Macro Error Failure - Error
18.27.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qPochhammer{q}{q}{n}\sum_{\ell=0}^{\floor{n/2}}\frac{(-1)^{\ell}q^{-2n\ell}q^{\ell(2\ell+1)}x^{n-2\ell}}{\qPochhammer{q^{2}}{q^{2}}{\ell}\qPochhammer{q}{q}{n-2\ell}} = x^{n}\qgenhyperphi{2}{1}@@{q^{-n},q^{-n+1}}{0}{q^{2}}{-x^{-2}q^{2}}}
\qPochhammer{q}{q}{n}\sum_{\ell=0}^{\floor{n/2}}\frac{(-1)^{\ell}q^{-2n\ell}q^{\ell(2\ell+1)}x^{n-2\ell}}{\qPochhammer{q^{2}}{q^{2}}{\ell}\qPochhammer{q}{q}{n-2\ell}} = x^{n}\qgenhyperphi{2}{1}@@{q^{-n},q^{-n+1}}{0}{q^{2}}{-x^{-2}q^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
QPochhammer[q, q, n]*Sum[Divide[(- 1)^\[ScriptL]* (q)^(- 2*n*\[ScriptL])* (q)^(\[ScriptL]*(2*\[ScriptL]+ 1))* (x)^(n - 2*\[ScriptL]),QPochhammer[(q)^(2), (q)^(2), \[ScriptL]]*QPochhammer[q, q, n - 2*\[ScriptL]]], {\[ScriptL], 0, Floor[n/2]}, GenerateConditions->None] == (x)^(n)* QHypergeometricPFQ[{(q)^(- n), (q)^(- n + 1)},{0},(q)^(2),- (x)^(- 2)* (q)^(2)]
Missing Macro Error Aborted - Skipped - Because timed out