Elliptic Integrals - 19.6 Special Cases

From testwiki
Revision as of 11:49, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.6#Ex1 K ( 0 ) = E ( 0 ) complete-elliptic-integral-first-kind-K 0 complete-elliptic-integral-second-kind-E 0 {\displaystyle{\displaystyle K\left(0\right)=E\left(0\right)}}
\compellintKk@{0} = \compellintEk@{0}

EllipticK(0) = EllipticE(0)
EllipticK[(0)^2] == EllipticE[(0)^2]
Successful Successful - Successful [Tested: 1]
19.6#Ex1 E ( 0 ) = K ( 1 ) complete-elliptic-integral-second-kind-E 0 complementary-complete-elliptic-integral-first-kind-K 1 {\displaystyle{\displaystyle E\left(0\right)={K^{\prime}}\left(1\right)}}
\compellintEk@{0} = \ccompellintKk@{1}

EllipticE(0) = EllipticCK(1)
EllipticE[(0)^2] == EllipticK[1-(1)^2]
Successful Successful - Successful [Tested: 1]
19.6#Ex1 K ( 1 ) = E ( 1 ) complementary-complete-elliptic-integral-first-kind-K 1 complementary-complete-elliptic-integral-second-kind-E 1 {\displaystyle{\displaystyle{K^{\prime}}\left(1\right)={E^{\prime}}\left(1% \right)}}
\ccompellintKk@{1} = \ccompellintEk@{1}

EllipticCK(1) = EllipticCE(1)
EllipticK[1-(1)^2] == EllipticE[1-(1)^2]
Successful Successful - Successful [Tested: 1]
19.6#Ex1 E ( 1 ) = 1 2 π complementary-complete-elliptic-integral-second-kind-E 1 1 2 𝜋 {\displaystyle{\displaystyle{E^{\prime}}\left(1\right)=\tfrac{1}{2}\pi}}
\ccompellintEk@{1} = \tfrac{1}{2}\pi

EllipticCE(1) = (1)/(2)*Pi
EllipticE[1-(1)^2] == Divide[1,2]*Pi
Successful Successful - Successful [Tested: 1]
19.6#Ex2 K ( 1 ) = K ( 0 ) complete-elliptic-integral-first-kind-K 1 complementary-complete-elliptic-integral-first-kind-K 0 {\displaystyle{\displaystyle K\left(1\right)={K^{\prime}}\left(0\right)}}
\compellintKk@{1} = \ccompellintKk@{0}

EllipticK(1) = EllipticCK(0)
EllipticK[(1)^2] == EllipticK[1-(0)^2]
Error Failure -
Failed [1 / 1]
Result: Indeterminate
Test Values: {}

19.6#Ex2 K ( 0 ) = complementary-complete-elliptic-integral-first-kind-K 0 {\displaystyle{\displaystyle{K^{\prime}}\left(0\right)=\infty}}
\ccompellintKk@{0} = \infty

EllipticCK(0) = infinity
EllipticK[1-(0)^2] == Infinity
Error Failure -
Failed [1 / 1]
Result: Indeterminate
Test Values: {}

19.6#Ex3 E ( 1 ) = E ( 0 ) complete-elliptic-integral-second-kind-E 1 complementary-complete-elliptic-integral-second-kind-E 0 {\displaystyle{\displaystyle E\left(1\right)={E^{\prime}}\left(0\right)}}
\compellintEk@{1} = \ccompellintEk@{0}

EllipticE(1) = EllipticCE(0)
EllipticE[(1)^2] == EllipticE[1-(0)^2]
Successful Successful - Successful [Tested: 1]
19.6#Ex3 E ( 0 ) = 1 complementary-complete-elliptic-integral-second-kind-E 0 1 {\displaystyle{\displaystyle{E^{\prime}}\left(0\right)=1}}
\ccompellintEk@{0} = 1

EllipticCE(0) = 1
EllipticE[1-(0)^2] == 1
Successful Successful - Successful [Tested: 1]
19.6#Ex4 Π ( k 2 , k ) = E ( k ) / k 2 complete-elliptic-integral-third-kind-Pi superscript 𝑘 2 𝑘 complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 2 {\displaystyle{\displaystyle\Pi\left(k^{2},k\right)=E\left(k\right)/{k^{\prime% }}^{2}}}
\compellintPik@{k^{2}}{k} = \compellintEk@{k}/{k^{\prime}}^{2}
k 2 < 1 superscript 𝑘 2 1 {\displaystyle{\displaystyle k^{2}<1}}
EllipticPi((k)^(2), k) = EllipticE(k)/(1 - (k)^(2))
EllipticPi[(k)^(2), (k)^2] == EllipticE[(k)^2]/(1 - (k)^(2))
Successful Successful - Successful [Tested: 0]
19.6#Ex5 Π ( - k , k ) = 1 4 π ( 1 + k ) - 1 + 1 2 K ( k ) complete-elliptic-integral-third-kind-Pi 𝑘 𝑘 1 4 𝜋 superscript 1 𝑘 1 1 2 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle\Pi\left(-k,k\right)=\tfrac{1}{4}\pi(1+k)^{-1}+% \tfrac{1}{2}K\left(k\right)}}
\compellintPik@{-k}{k} = \tfrac{1}{4}\pi(1+k)^{-1}+\tfrac{1}{2}\compellintKk@{k}
0 k 2 , k 2 < 1 formulae-sequence 0 superscript 𝑘 2 superscript 𝑘 2 1 {\displaystyle{\displaystyle 0\leq k^{2},k^{2}<1}}
EllipticPi(- k, k) = (1)/(4)*Pi*(1 + k)^(- 1)+(1)/(2)*EllipticK(k)
EllipticPi[- k, (k)^2] == Divide[1,4]*Pi*(1 + k)^(- 1)+Divide[1,2]*EllipticK[(k)^2]
Failure Failure Error Skip - No test values generated
19.6.E3 Π ( α 2 , 0 ) = π / ( 2 1 - α 2 ) , Π ( 0 , k ) complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 0 𝜋 2 1 superscript 𝛼 2 complete-elliptic-integral-third-kind-Pi 0 𝑘 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},0\right)=\pi/(2\sqrt{1-\alpha^% {2}}),\quad\Pi\left(0,k\right)}}
\compellintPik@{\alpha^{2}}{0} = \pi/(2\sqrt{1-\alpha^{2}}),\quad\compellintPik@{0}{k}
- < α 2 , α 2 < 1 formulae-sequence superscript 𝛼 2 superscript 𝛼 2 1 {\displaystyle{\displaystyle-\infty<\alpha^{2},\alpha^{2}<1}}
EllipticPi((alpha)^(2), 0) = Pi/(2*sqrt(1 - (alpha)^(2)))
EllipticPi[\[Alpha]^(2), (0)^2] == Pi/(2*Sqrt[1 - \[Alpha]^(2)])
Successful Failure Skip - symbolical successful subtest Error
19.6.E3 π / ( 2 1 - α 2 ) , Π ( 0 , k ) = K ( k ) 𝜋 2 1 superscript 𝛼 2 complete-elliptic-integral-third-kind-Pi 0 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle\pi/(2\sqrt{1-\alpha^{2}}),\quad\Pi\left(0,k\right% )=K\left(k\right)}}
\pi/(2\sqrt{1-\alpha^{2}}),\quad\compellintPik@{0}{k} = \compellintKk@{k}
- < α 2 , α 2 < 1 formulae-sequence superscript 𝛼 2 superscript 𝛼 2 1 {\displaystyle{\displaystyle-\infty<\alpha^{2},\alpha^{2}<1}}
Pi/(2*sqrt(1 - (alpha)^(2)))
Pi/(2*Sqrt[1 - \[Alpha]^(2)])
Failure Failure Error Error
19.6.E5 Π ( α 2 , k ) = K ( k ) - Π ( k 2 / α 2 , k ) complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-third-kind-Pi superscript 𝑘 2 superscript 𝛼 2 𝑘 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},k\right)=K\left(k\right)-\Pi% \left(k^{2}/\alpha^{2},k\right)}}
\compellintPik@{\alpha^{2}}{k} = \compellintKk@{k}-\compellintPik@{k^{2}/\alpha^{2}}{k}

EllipticPi((alpha)^(2), k) = EllipticK(k)- EllipticPi((k)^(2)/(alpha)^(2), k)
EllipticPi[\[Alpha]^(2), (k)^2] == EllipticK[(k)^2]- EllipticPi[(k)^(2)/\[Alpha]^(2), (k)^2]
Failure Failure Error
Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5]}

Result: Complex[-1.593078238683172, 2.4424906541753444*^-15]
Test Values: {Rule[k, 2], Rule[α, 1.5]}

... skip entries to safe data
19.6#Ex8 Π ( α 2 , 0 ) = 0 complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 0 0 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},0\right)=0}}
\compellintPik@{\alpha^{2}}{0} = 0

EllipticPi((alpha)^(2), 0) = 0
EllipticPi[\[Alpha]^(2), (0)^2] == 0
Failure Failure
Failed [3 / 3]
Result: -1.404962946*I
Test Values: {alpha = 3/2}

Result: 1.813799364
Test Values: {alpha = 1/2}

... skip entries to safe data
Failed [3 / 3]
Result: Complex[0.0, -1.4049629462081452]
Test Values: {Rule[α, 1.5]}

Result: 1.813799364234218
Test Values: {Rule[α, 0.5]}

... skip entries to safe data
19.6#Ex11 F ( 0 , k ) = 0 elliptic-integral-first-kind-F 0 𝑘 0 {\displaystyle{\displaystyle F\left(0,k\right)=0}}
\incellintFk@{0}{k} = 0

EllipticF(sin(0), k) = 0
EllipticF[0, (k)^2] == 0
Successful Successful - Successful [Tested: 3]
19.6#Ex12 F ( ϕ , 0 ) = ϕ elliptic-integral-first-kind-F italic-ϕ 0 italic-ϕ {\displaystyle{\displaystyle F\left(\phi,0\right)=\phi}}
\incellintFk@{\phi}{0} = \phi

EllipticF(sin(phi), 0) = phi
EllipticF[\[Phi], (0)^2] == \[Phi]
Failure Successful
Failed [2 / 10]
Result: .858407346
Test Values: {phi = -2}

Result: -.858407346
Test Values: {phi = 2}

Successful [Tested: 10]
19.6#Ex13 F ( 1 2 π , 1 ) = elliptic-integral-first-kind-F 1 2 𝜋 1 {\displaystyle{\displaystyle F\left(\tfrac{1}{2}\pi,1\right)=\infty}}
\incellintFk@{\tfrac{1}{2}\pi}{1} = \infty

EllipticF(sin((1)/(2)*Pi), 1) = infinity
EllipticF[Divide[1,2]*Pi, (1)^2] == Infinity
Error Failure -
Failed [1 / 1]
Result: Indeterminate
Test Values: {}

19.6#Ex14 F ( 1 2 π , k ) = K ( k ) elliptic-integral-first-kind-F 1 2 𝜋 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle F\left(\tfrac{1}{2}\pi,k\right)=K\left(k\right)}}
\incellintFk@{\tfrac{1}{2}\pi}{k} = \compellintKk@{k}

EllipticF(sin((1)/(2)*Pi), k) = EllipticK(k)
EllipticF[Divide[1,2]*Pi, (k)^2] == EllipticK[(k)^2]
Successful Successful - Successful [Tested: 3]
19.6#Ex15 lim ϕ 0 F ( ϕ , k ) / ϕ = 1 subscript italic-ϕ 0 elliptic-integral-first-kind-F italic-ϕ 𝑘 italic-ϕ 1 {\displaystyle{\displaystyle\lim_{\phi\to 0}\ifrac{F\left(\phi,k\right)}{\phi}% =1}}
\lim_{\phi\to 0}\ifrac{\incellintFk@{\phi}{k}}{\phi} = 1

limit((EllipticF(sin(phi), k))/(phi), phi = 0) = 1
Limit[Divide[EllipticF[\[Phi], (k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 3]
19.6.E8 F ( ϕ , 1 ) = ( sin ϕ ) R C ( 1 , cos 2 ϕ ) elliptic-integral-first-kind-F italic-ϕ 1 italic-ϕ Carlson-integral-RC 1 2 italic-ϕ {\displaystyle{\displaystyle F\left(\phi,1\right)=(\sin\phi)R_{C}\left(1,{\cos% ^{2}}\phi\right)}}
\incellintFk@{\phi}{1} = (\sin@@{\phi})\CarlsonellintRC@{1}{\cos^{2}@@{\phi}}

Error
EllipticF[\[Phi], (1)^2] == (Sin[\[Phi]])*1/Sqrt[(Cos[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cos[\[Phi]])^(2))]
Missing Macro Error Failure -
Failed [2 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[ϕ, -2]}

Result: DirectedInfinity[]
Test Values: {Rule[ϕ, 2]}

19.6.E8 ( sin ϕ ) R C ( 1 , cos 2 ϕ ) = gd - 1 ( ϕ ) italic-ϕ Carlson-integral-RC 1 2 italic-ϕ inverse-Gudermannian italic-ϕ {\displaystyle{\displaystyle(\sin\phi)R_{C}\left(1,{\cos^{2}}\phi\right)={% \operatorname{gd}^{-1}}\left(\phi\right)}}
(\sin@@{\phi})\CarlsonellintRC@{1}{\cos^{2}@@{\phi}} = \aGudermannian@{\phi}
- 1 2 π < ( ϕ ) , ( ϕ ) < 1 2 π formulae-sequence 1 2 𝜋 italic-ϕ italic-ϕ 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<(\phi),(\phi)<\frac{1}{2}\pi}}
Error
(Sin[\[Phi]])*1/Sqrt[(Cos[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cos[\[Phi]])^(2))] == InverseGudermannian[\[Phi]]
Missing Macro Error Failure - Successful [Tested: 4]
19.6#Ex16 E ( 0 , k ) = 0 elliptic-integral-second-kind-E 0 𝑘 0 {\displaystyle{\displaystyle E\left(0,k\right)=0}}
\incellintEk@{0}{k} = 0

EllipticE(sin(0), k) = 0
EllipticE[0, (k)^2] == 0
Successful Successful - Successful [Tested: 3]
19.6#Ex17 E ( ϕ , 0 ) = ϕ elliptic-integral-second-kind-E italic-ϕ 0 italic-ϕ {\displaystyle{\displaystyle E\left(\phi,0\right)=\phi}}
\incellintEk@{\phi}{0} = \phi

EllipticE(sin(phi), 0) = phi
EllipticE[\[Phi], (0)^2] == \[Phi]
Failure Successful
Failed [2 / 10]
Result: .858407346
Test Values: {phi = -2}

Result: -.858407346
Test Values: {phi = 2}

Successful [Tested: 10]
19.6#Ex18 E ( 1 2 π , 1 ) = 1 elliptic-integral-second-kind-E 1 2 𝜋 1 1 {\displaystyle{\displaystyle E\left(\tfrac{1}{2}\pi,1\right)=1}}
\incellintEk@{\tfrac{1}{2}\pi}{1} = 1

EllipticE(sin((1)/(2)*Pi), 1) = 1
EllipticE[Divide[1,2]*Pi, (1)^2] == 1
Successful Successful - Successful [Tested: 1]
19.6#Ex19 E ( ϕ , 1 ) = sin ϕ elliptic-integral-second-kind-E italic-ϕ 1 italic-ϕ {\displaystyle{\displaystyle E\left(\phi,1\right)=\sin\phi}}
\incellintEk@{\phi}{1} = \sin@@{\phi}

EllipticE(sin(phi), 1) = sin(phi)
EllipticE[\[Phi], (1)^2] == Sin[\[Phi]]
Successful Failure -
Failed [2 / 10]
Result: -0.1814051463486368
Test Values: {Rule[ϕ, -2]}

Result: 0.1814051463486368
Test Values: {Rule[ϕ, 2]}

19.6#Ex20 E ( 1 2 π , k ) = E ( k ) elliptic-integral-second-kind-E 1 2 𝜋 𝑘 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle E\left(\tfrac{1}{2}\pi,k\right)=E\left(k\right)}}
\incellintEk@{\tfrac{1}{2}\pi}{k} = \compellintEk@{k}

EllipticE(sin((1)/(2)*Pi), k) = EllipticE(k)
EllipticE[Divide[1,2]*Pi, (k)^2] == EllipticE[(k)^2]
Successful Successful - Successful [Tested: 3]
19.6.E10 lim ϕ 0 E ( ϕ , k ) / ϕ = 1 subscript italic-ϕ 0 elliptic-integral-second-kind-E italic-ϕ 𝑘 italic-ϕ 1 {\displaystyle{\displaystyle\lim_{\phi\to 0}\ifrac{E\left(\phi,k\right)}{\phi}% =1}}
\lim_{\phi\to 0}\ifrac{\incellintEk@{\phi}{k}}{\phi} = 1

limit((EllipticE(sin(phi), k))/(phi), phi = 0) = 1
Limit[Divide[EllipticE[\[Phi], (k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 3]
19.6#Ex21 Π ( 0 , α 2 , k ) = 0 elliptic-integral-third-kind-Pi 0 superscript 𝛼 2 𝑘 0 {\displaystyle{\displaystyle\Pi\left(0,\alpha^{2},k\right)=0}}
\incellintPik@{0}{\alpha^{2}}{k} = 0

EllipticPi(sin(0), (alpha)^(2), k) = 0
EllipticPi[\[Alpha]^(2), 0,(k)^2] == 0
Successful Successful - Successful [Tested: 9]
19.6#Ex22 Π ( ϕ , 0 , 0 ) = ϕ elliptic-integral-third-kind-Pi italic-ϕ 0 0 italic-ϕ {\displaystyle{\displaystyle\Pi\left(\phi,0,0\right)=\phi}}
\incellintPik@{\phi}{0}{0} = \phi

EllipticPi(sin(phi), 0, 0) = phi
EllipticPi[0, \[Phi],(0)^2] == \[Phi]
Failure Successful
Failed [2 / 10]
Result: .858407346
Test Values: {phi = -2}

Result: -.858407346
Test Values: {phi = 2}

Successful [Tested: 10]
19.6#Ex23 Π ( ϕ , 1 , 0 ) = tan ϕ elliptic-integral-third-kind-Pi italic-ϕ 1 0 italic-ϕ {\displaystyle{\displaystyle\Pi\left(\phi,1,0\right)=\tan\phi}}
\incellintPik@{\phi}{1}{0} = \tan@@{\phi}

EllipticPi(sin(phi), 1, 0) = tan(phi)
EllipticPi[1, \[Phi],(0)^2] == Tan[\[Phi]]
Failure Successful
Failed [2 / 10]
Result: -4.370079726
Test Values: {phi = -2}

Result: 4.370079726
Test Values: {phi = 2}

Successful [Tested: 10]
19.6#Ex24 Π ( ϕ , α 2 , 0 ) = R C ( c - 1 , c - α 2 ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 0 Carlson-integral-RC 𝑐 1 𝑐 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},0\right)=R_{C}\left(c-1,c% -\alpha^{2}\right)}}
\incellintPik@{\phi}{\alpha^{2}}{0} = \CarlsonellintRC@{c-1}{c-\alpha^{2}}

Error
EllipticPi[\[Alpha]^(2), \[Phi],(0)^2] == 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c - 1)/(c - \[Alpha]^(2))]
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[0.4032669574270382, 0.8997227991212673]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.17167863497284278, 0.9673069947694621]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.6#Ex25 Π ( ϕ , α 2 , 1 ) = 1 1 - α 2 ( R C ( c , c - 1 ) - α 2 R C ( c , c - α 2 ) ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 1 1 1 superscript 𝛼 2 Carlson-integral-RC 𝑐 𝑐 1 superscript 𝛼 2 Carlson-integral-RC 𝑐 𝑐 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},1\right)=\frac{1}{1-% \alpha^{2}}\left(R_{C}\left(c,c-1\right)-\alpha^{2}R_{C}\left(c,c-\alpha^{2}% \right)\right)}}
\incellintPik@{\phi}{\alpha^{2}}{1} = \frac{1}{1-\alpha^{2}}\left(\CarlsonellintRC@{c}{c-1}-\alpha^{2}\CarlsonellintRC@{c}{c-\alpha^{2}}\right)

Error
EllipticPi[\[Alpha]^(2), \[Phi],(1)^2] == Divide[1,1 - \[Alpha]^(2)]*(1/Sqrt[c - 1]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - 1)]- \[Alpha]^(2)* 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - \[Alpha]^(2))])
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[0.39392267303966433, 0.8870442763896845]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.15564928813724596, 0.9274825692848638]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.6#Ex26 Π ( ϕ , 1 , 1 ) = 1 2 ( R C ( c , c - 1 ) + c ( c - 1 ) - 1 ) elliptic-integral-third-kind-Pi italic-ϕ 1 1 1 2 Carlson-integral-RC 𝑐 𝑐 1 𝑐 superscript 𝑐 1 1 {\displaystyle{\displaystyle\Pi\left(\phi,1,1\right)=\tfrac{1}{2}(R_{C}\left(c% ,c-1\right)+\sqrt{c}(c-1)^{-1})}}
\incellintPik@{\phi}{1}{1} = \tfrac{1}{2}(\CarlsonellintRC@{c}{c-1}+\sqrt{c}(c-1)^{-1})

Error
EllipticPi[1, \[Phi],(1)^2] == Divide[1,2]*(1/Sqrt[c - 1]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - 1)]+Sqrt[c]*(c - 1)^(- 1))
Missing Macro Error Failure -
Failed [60 / 60]
Result: Complex[0.42461599644771203, 0.9033982135739806]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.19222674503116347, 1.0138365568937844]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.6#Ex27 Π ( ϕ , 0 , k ) = F ( ϕ , k ) elliptic-integral-third-kind-Pi italic-ϕ 0 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\Pi\left(\phi,0,k\right)=F\left(\phi,k\right)}}
\incellintPik@{\phi}{0}{k} = \incellintFk@{\phi}{k}

EllipticPi(sin(phi), 0, k) = EllipticF(sin(phi), k)
EllipticPi[0, \[Phi],(k)^2] == EllipticF[\[Phi], (k)^2]
Successful Successful - Successful [Tested: 30]
19.6#Ex28 Π ( ϕ , k 2 , k ) = 1 k 2 ( E ( ϕ , k ) - k 2 Δ sin ϕ cos ϕ ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝑘 2 𝑘 1 superscript superscript 𝑘 2 elliptic-integral-second-kind-E italic-ϕ 𝑘 superscript 𝑘 2 Δ italic-ϕ italic-ϕ {\displaystyle{\displaystyle\Pi\left(\phi,k^{2},k\right)=\frac{1}{{k^{\prime}}% ^{2}}\left(E\left(\phi,k\right)-\frac{k^{2}}{\Delta}\sin\phi\cos\phi\right)}}
\incellintPik@{\phi}{k^{2}}{k} = \frac{1}{{k^{\prime}}^{2}}\left(\incellintEk@{\phi}{k}-\frac{k^{2}}{\Delta}\sin@@{\phi}\cos@@{\phi}\right)

EllipticPi(sin(phi), (k)^(2), k) = (1)/(1 - (k)^(2))*(EllipticE(sin(phi), k)-((k)^(2))/(Delta)*sin(phi)*cos(phi))
EllipticPi[(k)^(2), \[Phi],(k)^2] == Divide[1,1 - (k)^(2)]*(EllipticE[\[Phi], (k)^2]-Divide[(k)^(2),\[CapitalDelta]]*Sin[\[Phi]]*Cos[\[Phi]])
Failure Failure
Failed [300 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.4574406724+1.116997071*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.8161437733664769, 0.6845645198965172]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.6#Ex29 Π ( ϕ , 1 , k ) = F ( ϕ , k ) - 1 k 2 ( E ( ϕ , k ) - Δ tan ϕ ) elliptic-integral-third-kind-Pi italic-ϕ 1 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 1 superscript superscript 𝑘 2 elliptic-integral-second-kind-E italic-ϕ 𝑘 Δ italic-ϕ {\displaystyle{\displaystyle\Pi\left(\phi,1,k\right)=F\left(\phi,k\right)-% \frac{1}{{k^{\prime}}^{2}}(E\left(\phi,k\right)-\Delta\tan\phi)}}
\incellintPik@{\phi}{1}{k} = \incellintFk@{\phi}{k}-\frac{1}{{k^{\prime}}^{2}}(\incellintEk@{\phi}{k}-\Delta\tan@@{\phi})

EllipticPi(sin(phi), 1, k) = EllipticF(sin(phi), k)-(1)/(1 - (k)^(2))*(EllipticE(sin(phi), k)- Delta*tan(phi))
EllipticPi[1, \[Phi],(k)^2] == EllipticF[\[Phi], (k)^2]-Divide[1,1 - (k)^(2)]*(EllipticE[\[Phi], (k)^2]- \[CapitalDelta]*Tan[\[Phi]])
Failure Failure
Failed [300 / 300]
Result: Float(infinity)+Float(infinity)*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.5381374542+.4861981155*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.12805668293605252, 0.0652384492706456]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.6#Ex30 Π ( 1 2 π , α 2 , k ) = Π ( α 2 , k ) elliptic-integral-third-kind-Pi 1 2 𝜋 superscript 𝛼 2 𝑘 complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 {\displaystyle{\displaystyle\Pi\left(\tfrac{1}{2}\pi,\alpha^{2},k\right)=\Pi% \left(\alpha^{2},k\right)}}
\incellintPik@{\tfrac{1}{2}\pi}{\alpha^{2}}{k} = \compellintPik@{\alpha^{2}}{k}

EllipticPi(sin((1)/(2)*Pi), (alpha)^(2), k) = EllipticPi((alpha)^(2), k)
EllipticPi[\[Alpha]^(2), Divide[1,2]*Pi,(k)^2] == EllipticPi[\[Alpha]^(2), (k)^2]
Successful Successful - Successful [Tested: 9]
19.6#Ex31 lim ϕ 0 Π ( ϕ , α 2 , k ) / ϕ = 1 subscript italic-ϕ 0 elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 italic-ϕ 1 {\displaystyle{\displaystyle\lim_{\phi\to 0}\ifrac{\Pi\left(\phi,\alpha^{2},k% \right)}{\phi}=1}}
\lim_{\phi\to 0}\ifrac{\incellintPik@{\phi}{\alpha^{2}}{k}}{\phi} = 1

limit((EllipticPi(sin(phi), (alpha)^(2), k))/(phi), phi = 0) = 1
Limit[Divide[EllipticPi[\[Alpha]^(2), \[Phi],(k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 9]
19.6#Ex32 R C ( x , x ) = x - 1 / 2 Carlson-integral-RC 𝑥 𝑥 superscript 𝑥 1 2 {\displaystyle{\displaystyle R_{C}\left(x,x\right)=x^{-1/2}}}
\CarlsonellintRC@{x}{x} = x^{-1/2}

Error
1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(x)] == (x)^(- 1/2)
Missing Macro Error Successful - Successful [Tested: 3]
19.6#Ex33 R C ( λ x , λ y ) = λ - 1 / 2 R C ( x , y ) Carlson-integral-RC 𝜆 𝑥 𝜆 𝑦 superscript 𝜆 1 2 Carlson-integral-RC 𝑥 𝑦 {\displaystyle{\displaystyle R_{C}\left(\lambda x,\lambda y\right)=\lambda^{-1% /2}R_{C}\left(x,y\right)}}
\CarlsonellintRC@{\lambda x}{\lambda y} = \lambda^{-1/2}\CarlsonellintRC@{x}{y}

Error
1/Sqrt[\[Lambda]*y]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Lambda]*x)/(\[Lambda]*y)] == \[Lambda]^(- 1/2)* 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]
Missing Macro Error Failure -
Failed [75 / 180]
Result: Complex[2.0541315094196904, 2.1051836996148214]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[2.941079989400646, 0.036099349881403064]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.6#Ex35 R C ( 0 , y ) = 1 2 π y - 1 / 2 Carlson-integral-RC 0 𝑦 1 2 𝜋 superscript 𝑦 1 2 {\displaystyle{\displaystyle R_{C}\left(0,y\right)=\tfrac{1}{2}\pi y^{-1/2}}}
\CarlsonellintRC@{0}{y} = \tfrac{1}{2}\pi y^{-1/2}
| ph y | < π phase 𝑦 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}y|<\pi}}
Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(0)/(y)] == Divide[1,2]*Pi*(y)^(- 1/2)
Missing Macro Error Successful - Successful [Tested: 3]
19.6#Ex36 R C ( 0 , y ) = 0 Carlson-integral-RC 0 𝑦 0 {\displaystyle{\displaystyle R_{C}\left(0,y\right)=0}}
\CarlsonellintRC@{0}{y} = 0
y < 0 𝑦 0 {\displaystyle{\displaystyle y<0}}
Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(0)/(y)] == 0
Missing Macro Error Failure -
Failed [3 / 3]
Result: Complex[0.0, -1.2825498301618643]
Test Values: {Rule[y, -1.5]}

Result: Complex[0.0, -2.221441469079183]
Test Values: {Rule[y, -0.5]}

... skip entries to safe data