Elliptic Integrals - 19.6 Special Cases
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.6#Ex1 | \compellintKk@{0} = \compellintEk@{0} |
|
EllipticK(0) = EllipticE(0)
|
EllipticK[(0)^2] == EllipticE[(0)^2]
|
Successful | Successful | - | Successful [Tested: 1] |
19.6#Ex1 | \compellintEk@{0} = \ccompellintKk@{1} |
|
EllipticE(0) = EllipticCK(1)
|
EllipticE[(0)^2] == EllipticK[1-(1)^2]
|
Successful | Successful | - | Successful [Tested: 1] |
19.6#Ex1 | \ccompellintKk@{1} = \ccompellintEk@{1} |
|
EllipticCK(1) = EllipticCE(1)
|
EllipticK[1-(1)^2] == EllipticE[1-(1)^2]
|
Successful | Successful | - | Successful [Tested: 1] |
19.6#Ex1 | \ccompellintEk@{1} = \tfrac{1}{2}\pi |
|
EllipticCE(1) = (1)/(2)*Pi
|
EllipticE[1-(1)^2] == Divide[1,2]*Pi
|
Successful | Successful | - | Successful [Tested: 1] |
19.6#Ex2 | \compellintKk@{1} = \ccompellintKk@{0} |
|
EllipticK(1) = EllipticCK(0)
|
EllipticK[(1)^2] == EllipticK[1-(0)^2]
|
Error | Failure | - | Failed [1 / 1]
Result: Indeterminate
Test Values: {}
|
19.6#Ex2 | \ccompellintKk@{0} = \infty |
|
EllipticCK(0) = infinity
|
EllipticK[1-(0)^2] == Infinity
|
Error | Failure | - | Failed [1 / 1]
Result: Indeterminate
Test Values: {}
|
19.6#Ex3 | \compellintEk@{1} = \ccompellintEk@{0} |
|
EllipticE(1) = EllipticCE(0)
|
EllipticE[(1)^2] == EllipticE[1-(0)^2]
|
Successful | Successful | - | Successful [Tested: 1] |
19.6#Ex3 | \ccompellintEk@{0} = 1 |
|
EllipticCE(0) = 1
|
EllipticE[1-(0)^2] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
19.6#Ex4 | \compellintPik@{k^{2}}{k} = \compellintEk@{k}/{k^{\prime}}^{2} |
EllipticPi((k)^(2), k) = EllipticE(k)/(1 - (k)^(2))
|
EllipticPi[(k)^(2), (k)^2] == EllipticE[(k)^2]/(1 - (k)^(2))
|
Successful | Successful | - | Successful [Tested: 0] | |
19.6#Ex5 | \compellintPik@{-k}{k} = \tfrac{1}{4}\pi(1+k)^{-1}+\tfrac{1}{2}\compellintKk@{k} |
EllipticPi(- k, k) = (1)/(4)*Pi*(1 + k)^(- 1)+(1)/(2)*EllipticK(k)
|
EllipticPi[- k, (k)^2] == Divide[1,4]*Pi*(1 + k)^(- 1)+Divide[1,2]*EllipticK[(k)^2]
|
Failure | Failure | Error | Skip - No test values generated | |
19.6.E3 | \compellintPik@{\alpha^{2}}{0} = \pi/(2\sqrt{1-\alpha^{2}}),\quad\compellintPik@{0}{k} |
EllipticPi((alpha)^(2), 0) = Pi/(2*sqrt(1 - (alpha)^(2)))
|
EllipticPi[\[Alpha]^(2), (0)^2] == Pi/(2*Sqrt[1 - \[Alpha]^(2)])
|
Successful | Failure | Skip - symbolical successful subtest | Error | |
19.6.E3 | \pi/(2\sqrt{1-\alpha^{2}}),\quad\compellintPik@{0}{k} = \compellintKk@{k} |
Pi/(2*sqrt(1 - (alpha)^(2)))
|
Pi/(2*Sqrt[1 - \[Alpha]^(2)])
|
Failure | Failure | Error | Error | |
19.6.E5 | \compellintPik@{\alpha^{2}}{k} = \compellintKk@{k}-\compellintPik@{k^{2}/\alpha^{2}}{k} |
|
EllipticPi((alpha)^(2), k) = EllipticK(k)- EllipticPi((k)^(2)/(alpha)^(2), k)
|
EllipticPi[\[Alpha]^(2), (k)^2] == EllipticK[(k)^2]- EllipticPi[(k)^(2)/\[Alpha]^(2), (k)^2]
|
Failure | Failure | Error | Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5]}
Result: Complex[-1.593078238683172, 2.4424906541753444*^-15]
Test Values: {Rule[k, 2], Rule[α, 1.5]}
... skip entries to safe data |
19.6#Ex8 | \compellintPik@{\alpha^{2}}{0} = 0 |
|
EllipticPi((alpha)^(2), 0) = 0
|
EllipticPi[\[Alpha]^(2), (0)^2] == 0
|
Failure | Failure | Failed [3 / 3] Result: -1.404962946*I
Test Values: {alpha = 3/2}
Result: 1.813799364
Test Values: {alpha = 1/2}
... skip entries to safe data |
Failed [3 / 3]
Result: Complex[0.0, -1.4049629462081452]
Test Values: {Rule[α, 1.5]}
Result: 1.813799364234218
Test Values: {Rule[α, 0.5]}
... skip entries to safe data |
19.6#Ex11 | \incellintFk@{0}{k} = 0 |
|
EllipticF(sin(0), k) = 0
|
EllipticF[0, (k)^2] == 0
|
Successful | Successful | - | Successful [Tested: 3] |
19.6#Ex12 | \incellintFk@{\phi}{0} = \phi |
|
EllipticF(sin(phi), 0) = phi
|
EllipticF[\[Phi], (0)^2] == \[Phi]
|
Failure | Successful | Failed [2 / 10] Result: .858407346
Test Values: {phi = -2}
Result: -.858407346
Test Values: {phi = 2}
|
Successful [Tested: 10] |
19.6#Ex13 | \incellintFk@{\tfrac{1}{2}\pi}{1} = \infty |
|
EllipticF(sin((1)/(2)*Pi), 1) = infinity
|
EllipticF[Divide[1,2]*Pi, (1)^2] == Infinity
|
Error | Failure | - | Failed [1 / 1]
Result: Indeterminate
Test Values: {}
|
19.6#Ex14 | \incellintFk@{\tfrac{1}{2}\pi}{k} = \compellintKk@{k} |
|
EllipticF(sin((1)/(2)*Pi), k) = EllipticK(k)
|
EllipticF[Divide[1,2]*Pi, (k)^2] == EllipticK[(k)^2]
|
Successful | Successful | - | Successful [Tested: 3] |
19.6#Ex15 | \lim_{\phi\to 0}\ifrac{\incellintFk@{\phi}{k}}{\phi} = 1 |
|
limit((EllipticF(sin(phi), k))/(phi), phi = 0) = 1
|
Limit[Divide[EllipticF[\[Phi], (k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 3] |
19.6.E8 | \incellintFk@{\phi}{1} = (\sin@@{\phi})\CarlsonellintRC@{1}{\cos^{2}@@{\phi}} |
|
Error
|
EllipticF[\[Phi], (1)^2] == (Sin[\[Phi]])*1/Sqrt[(Cos[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cos[\[Phi]])^(2))]
|
Missing Macro Error | Failure | - | Failed [2 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[ϕ, -2]}
Result: DirectedInfinity[]
Test Values: {Rule[ϕ, 2]}
|
19.6.E8 | (\sin@@{\phi})\CarlsonellintRC@{1}{\cos^{2}@@{\phi}} = \aGudermannian@{\phi} |
Error
|
(Sin[\[Phi]])*1/Sqrt[(Cos[\[Phi]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(1)/((Cos[\[Phi]])^(2))] == InverseGudermannian[\[Phi]]
|
Missing Macro Error | Failure | - | Successful [Tested: 4] | |
19.6#Ex16 | \incellintEk@{0}{k} = 0 |
|
EllipticE(sin(0), k) = 0
|
EllipticE[0, (k)^2] == 0
|
Successful | Successful | - | Successful [Tested: 3] |
19.6#Ex17 | \incellintEk@{\phi}{0} = \phi |
|
EllipticE(sin(phi), 0) = phi
|
EllipticE[\[Phi], (0)^2] == \[Phi]
|
Failure | Successful | Failed [2 / 10] Result: .858407346
Test Values: {phi = -2}
Result: -.858407346
Test Values: {phi = 2}
|
Successful [Tested: 10] |
19.6#Ex18 | \incellintEk@{\tfrac{1}{2}\pi}{1} = 1 |
|
EllipticE(sin((1)/(2)*Pi), 1) = 1
|
EllipticE[Divide[1,2]*Pi, (1)^2] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
19.6#Ex19 | \incellintEk@{\phi}{1} = \sin@@{\phi} |
|
EllipticE(sin(phi), 1) = sin(phi)
|
EllipticE[\[Phi], (1)^2] == Sin[\[Phi]]
|
Successful | Failure | - | Failed [2 / 10]
Result: -0.1814051463486368
Test Values: {Rule[ϕ, -2]}
Result: 0.1814051463486368
Test Values: {Rule[ϕ, 2]}
|
19.6#Ex20 | \incellintEk@{\tfrac{1}{2}\pi}{k} = \compellintEk@{k} |
|
EllipticE(sin((1)/(2)*Pi), k) = EllipticE(k)
|
EllipticE[Divide[1,2]*Pi, (k)^2] == EllipticE[(k)^2]
|
Successful | Successful | - | Successful [Tested: 3] |
19.6.E10 | \lim_{\phi\to 0}\ifrac{\incellintEk@{\phi}{k}}{\phi} = 1 |
|
limit((EllipticE(sin(phi), k))/(phi), phi = 0) = 1
|
Limit[Divide[EllipticE[\[Phi], (k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 3] |
19.6#Ex21 | \incellintPik@{0}{\alpha^{2}}{k} = 0 |
|
EllipticPi(sin(0), (alpha)^(2), k) = 0
|
EllipticPi[\[Alpha]^(2), 0,(k)^2] == 0 |
Successful | Successful | - | Successful [Tested: 9] |
19.6#Ex22 | \incellintPik@{\phi}{0}{0} = \phi |
|
EllipticPi(sin(phi), 0, 0) = phi |
EllipticPi[0, \[Phi],(0)^2] == \[Phi] |
Failure | Successful | Failed [2 / 10] Result: .858407346
Test Values: {phi = -2} Result: -.858407346
Test Values: {phi = 2} |
Successful [Tested: 10] |
19.6#Ex23 | \incellintPik@{\phi}{1}{0} = \tan@@{\phi} |
|
EllipticPi(sin(phi), 1, 0) = tan(phi) |
EllipticPi[1, \[Phi],(0)^2] == Tan[\[Phi]] |
Failure | Successful | Failed [2 / 10] Result: -4.370079726
Test Values: {phi = -2} Result: 4.370079726
Test Values: {phi = 2} |
Successful [Tested: 10] |
19.6#Ex24 | \incellintPik@{\phi}{\alpha^{2}}{0} = \CarlsonellintRC@{c-1}{c-\alpha^{2}} |
|
Error |
EllipticPi[\[Alpha]^(2), \[Phi],(0)^2] == 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c - 1)/(c - \[Alpha]^(2))] |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[0.4032669574270382, 0.8997227991212673]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.17167863497284278, 0.9673069947694621]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.6#Ex25 | \incellintPik@{\phi}{\alpha^{2}}{1} = \frac{1}{1-\alpha^{2}}\left(\CarlsonellintRC@{c}{c-1}-\alpha^{2}\CarlsonellintRC@{c}{c-\alpha^{2}}\right) |
|
Error |
EllipticPi[\[Alpha]^(2), \[Phi],(1)^2] == Divide[1,1 - \[Alpha]^(2)]*(1/Sqrt[c - 1]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - 1)]- \[Alpha]^(2)* 1/Sqrt[c - \[Alpha]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - \[Alpha]^(2))]) |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[0.39392267303966433, 0.8870442763896845]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.15564928813724596, 0.9274825692848638]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.6#Ex26 | \incellintPik@{\phi}{1}{1} = \tfrac{1}{2}(\CarlsonellintRC@{c}{c-1}+\sqrt{c}(c-1)^{-1}) |
|
Error |
EllipticPi[1, \[Phi],(1)^2] == Divide[1,2]*(1/Sqrt[c - 1]*Hypergeometric2F1[1/2,1/2,3/2,1-(c)/(c - 1)]+Sqrt[c]*(c - 1)^(- 1)) |
Missing Macro Error | Failure | - | Failed [60 / 60]
Result: Complex[0.42461599644771203, 0.9033982135739806]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.19222674503116347, 1.0138365568937844]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.6#Ex27 | \incellintPik@{\phi}{0}{k} = \incellintFk@{\phi}{k} |
|
EllipticPi(sin(phi), 0, k) = EllipticF(sin(phi), k) |
EllipticPi[0, \[Phi],(k)^2] == EllipticF[\[Phi], (k)^2] |
Successful | Successful | - | Successful [Tested: 30] |
19.6#Ex28 | \incellintPik@{\phi}{k^{2}}{k} = \frac{1}{{k^{\prime}}^{2}}\left(\incellintEk@{\phi}{k}-\frac{k^{2}}{\Delta}\sin@@{\phi}\cos@@{\phi}\right) |
|
EllipticPi(sin(phi), (k)^(2), k) = (1)/(1 - (k)^(2))*(EllipticE(sin(phi), k)-((k)^(2))/(Delta)*sin(phi)*cos(phi)) |
EllipticPi[(k)^(2), \[Phi],(k)^2] == Divide[1,1 - (k)^(2)]*(EllipticE[\[Phi], (k)^2]-Divide[(k)^(2),\[CapitalDelta]]*Sin[\[Phi]]*Cos[\[Phi]]) |
Failure | Failure | Failed [300 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1} Result: -.4574406724+1.116997071*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.8161437733664769, 0.6845645198965172]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.6#Ex29 | \incellintPik@{\phi}{1}{k} = \incellintFk@{\phi}{k}-\frac{1}{{k^{\prime}}^{2}}(\incellintEk@{\phi}{k}-\Delta\tan@@{\phi}) |
|
EllipticPi(sin(phi), 1, k) = EllipticF(sin(phi), k)-(1)/(1 - (k)^(2))*(EllipticE(sin(phi), k)- Delta*tan(phi)) |
EllipticPi[1, \[Phi],(k)^2] == EllipticF[\[Phi], (k)^2]-Divide[1,1 - (k)^(2)]*(EllipticE[\[Phi], (k)^2]- \[CapitalDelta]*Tan[\[Phi]]) |
Failure | Failure | Failed [300 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1} Result: -.5381374542+.4861981155*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.12805668293605252, 0.0652384492706456]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.6#Ex30 | \incellintPik@{\tfrac{1}{2}\pi}{\alpha^{2}}{k} = \compellintPik@{\alpha^{2}}{k} |
|
EllipticPi(sin((1)/(2)*Pi), (alpha)^(2), k) = EllipticPi((alpha)^(2), k) |
EllipticPi[\[Alpha]^(2), Divide[1,2]*Pi,(k)^2] == EllipticPi[\[Alpha]^(2), (k)^2] |
Successful | Successful | - | Successful [Tested: 9] |
19.6#Ex31 | \lim_{\phi\to 0}\ifrac{\incellintPik@{\phi}{\alpha^{2}}{k}}{\phi} = 1 |
|
limit((EllipticPi(sin(phi), (alpha)^(2), k))/(phi), phi = 0) = 1 |
Limit[Divide[EllipticPi[\[Alpha]^(2), \[Phi],(k)^2],\[Phi]], \[Phi] -> 0, GenerateConditions->None] == 1 |
Successful | Successful | - | Successful [Tested: 9] |
19.6#Ex32 | \CarlsonellintRC@{x}{x} = x^{-1/2} |
|
Error |
1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(x)] == (x)^(- 1/2) |
Missing Macro Error | Successful | - | Successful [Tested: 3] |
19.6#Ex33 | \CarlsonellintRC@{\lambda x}{\lambda y} = \lambda^{-1/2}\CarlsonellintRC@{x}{y} |
|
Error |
1/Sqrt[\[Lambda]*y]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Lambda]*x)/(\[Lambda]*y)] == \[Lambda]^(- 1/2)* 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] |
Missing Macro Error | Failure | - | Failed [75 / 180]
Result: Complex[2.0541315094196904, 2.1051836996148214]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[2.941079989400646, 0.036099349881403064]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.6#Ex35 | \CarlsonellintRC@{0}{y} = \tfrac{1}{2}\pi y^{-1/2} |
Error |
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(0)/(y)] == Divide[1,2]*Pi*(y)^(- 1/2) |
Missing Macro Error | Successful | - | Successful [Tested: 3] | |
19.6#Ex36 | \CarlsonellintRC@{0}{y} = 0 |
Error |
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(0)/(y)] == 0 |
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Complex[0.0, -1.2825498301618643]
Test Values: {Rule[y, -1.5]} Result: Complex[0.0, -2.221441469079183]
Test Values: {Rule[y, -0.5]} ... skip entries to safe data |