Elliptic Integrals - 19.7 Connection Formulas

From testwiki
Revision as of 12:49, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi}
\compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticE(k)*EllipticCK(k)+ EllipticCE(k)*EllipticK(k)- EllipticK(k)*EllipticCK(k) = (1)/(2)*Pi
EllipticE[(k)^2]*EllipticK[1-(k)^2]+ EllipticE[1-(k)^2]*EllipticK[(k)^2]- EllipticK[(k)^2]*EllipticK[1-(k)^2] == Divide[1,2]*Pi
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}}
\compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticK(I*k/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*EllipticK(k)
EllipticK[(I*k/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*EllipticK[(k)^2]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.220446049250313*^-16, -2.9198052634126777]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}}
\compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticK(- I*sqrt(1 - (k)^(2))/k) = k*EllipticK(sqrt(1 - (k)^(2)))
EllipticK[(- I*Sqrt[1 - (k)^(2)]/k)^2] == k*EllipticK[(Sqrt[1 - (k)^(2)])^2]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.7#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}}
\compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticE(I*k/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*EllipticE(k)
EllipticE[(I*k/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*EllipticE[(k)^2]
Failure Failure
Failed [3 / 3]
Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}

Result: .6e-9+.4691535424*I
Test Values: {k = 2}

... skip entries to safe data
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-5.551115123125783*^-16, 0.46915354293820644]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}}
\compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticE(- I*sqrt(1 - (k)^(2))/k) = (1/k)*EllipticE(sqrt(1 - (k)^(2)))
EllipticE[(- I*Sqrt[1 - (k)^(2)]/k)^2] == (1/k)*EllipticE[(Sqrt[1 - (k)^(2)])^2]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.7#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})}
\compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticK(1/k) = k*(EllipticK(k)- I*EllipticK(sqrt(1 - (k)^(2))))
EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]- I*EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.220446049250313*^-16, 4.313031294999287]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})}
\compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticK(1/k) = k*(EllipticK(k)+ I*EllipticK(sqrt(1 - (k)^(2))))
EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]+ I*EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})}
\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))+ I*EllipticK(k))
EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[2.9198052634126785, -3.7351946687866775]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})}
\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))- I*EllipticK(k))
EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*EllipticK[(k)^2])
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)}
\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticE(1/k) = (1/k)*(EllipticE(k)+ I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)- I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))
EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]+ I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]- I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[3.4500631209220436, -1.8829831432620088]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)}
\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticE(1/k) = (1/k)*(EllipticE(k)- I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)+ I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))
EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]- I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]+ I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[3.4500631209220436, -3.773902383124376]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)}
\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))- I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))+ I*1 - (k)^(2)*EllipticK(k))
EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]- I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*1 - (k)^(2)*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-1.1384238737361991, -2.262384972182541]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)}
\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))+ I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))- I*1 - (k)^(2)*EllipticK(k))
EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*1 - (k)^(2)*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-0.45287687829515355, -3.814134176668458]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}}
\incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticF(sin(I*phi), k) = I*EllipticF(sin(psi), sqrt(1 - (k)^(2)))
EllipticF[I*\[Phi], (k)^2] == I*EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]
Failure Failure
Failed [300 / 300]
Result: .1428695990-.263545696e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .749290340e-1-.334629029e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.020142137049999537, -0.0010462389457662757]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.015860617706546204, -0.003938067237051424]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.7#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)}
\incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticE(sin(I*phi), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- EllipticE(sin(psi), sqrt(1 - (k)^(2)))+(tan(psi))*sqrt(1 -1 - (k)^(2)*(sin(psi))^(2)))
EllipticE[I*\[Phi], (k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- EllipticE[\[Psi], (Sqrt[1 - (k)^(2)])^2]+(Tan[\[Psi]])*Sqrt[1 -1 - (k)^(2)*(Sin[\[Psi]])^(2)])
Failure Failure
Failed [300 / 300]
Result: -.9970133474-.1125517221*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -2.257467281-.7782721018*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.3893501368763376, 0.20738614458301174]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6710974690872284, 0.0060773305020283]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.7#Ex21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}}
\incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
EllipticPi(sin(I*phi), (alpha)^(2), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- (alpha)^(2)* EllipticPi(sin(psi), 1 - (alpha)^(2), sqrt(1 - (k)^(2))))/(1 - (alpha)^(2))
EllipticPi[\[Alpha]^(2), I*\[Phi],(k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- \[Alpha]^(2)* EllipticPi[1 - \[Alpha]^(2), \[Psi],(Sqrt[1 - (k)^(2)])^2])/(1 - \[Alpha]^(2))
Failure Failure
Failed [292 / 300]
Result: .926834363e-2-.484444094e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.130749569e-2-.277524276e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [298 / 300]
Result: Complex[0.013291772923717082, -0.006719909387202905]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.00953602334602252, -0.007394575555177196]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data