Elliptic Integrals - 19.9 Inequalities
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.9#Ex1 | \ln@@{4} \leq \compellintKk@{k}+\ln@@{k^{\prime}} |
|
ln(4) <= EllipticK(k)+ ln(sqrt(1 - (k)^(2)))
|
Log[4] <= EllipticK[(k)^2]+ Log[Sqrt[1 - (k)^(2)]]
|
Failure | Failure | Error | Failed [3 / 3]
Result: LessEqual[1.3862943611198906, Indeterminate]
Test Values: {Rule[k, 1]}
Result: LessEqual[1.3862943611198906, Complex[1.392181321740353, 0.49253850304507485]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9#Ex1 | \compellintKk@{k}+\ln@@{k^{\prime}} \leq \pi/2 |
|
EllipticK(k)+ ln(sqrt(1 - (k)^(2))) <= Pi/2
|
EllipticK[(k)^2]+ Log[Sqrt[1 - (k)^(2)]] <= Pi/2
|
Failure | Failure | Error | Failed [3 / 3]
Result: LessEqual[Indeterminate, 1.5707963267948966]
Test Values: {Rule[k, 1]}
Result: LessEqual[Complex[1.392181321740353, 0.49253850304507485], 1.5707963267948966]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9#Ex2 | 1 \leq \compellintEk@{k} |
|
1 <= EllipticE(k)
|
1 <= EllipticE[(k)^2]
|
Failure | Failure | Successful [Tested: 3] | Failed [2 / 3]
Result: LessEqual[1.0, Complex[0.40629888645996043, 1.343854231387098]]
Test Values: {Rule[k, 2]}
Result: LessEqual[1.0, Complex[0.2655964076372759, 2.498348127732516]]
Test Values: {Rule[k, 3]}
|
19.9#Ex2 | \compellintEk@{k} \leq \pi/2 |
|
EllipticE(k) <= Pi/2
|
EllipticE[(k)^2] <= Pi/2
|
Failure | Failure | Successful [Tested: 3] | Failed [2 / 3]
Result: LessEqual[Complex[0.40629888645996043, 1.343854231387098], 1.5707963267948966]
Test Values: {Rule[k, 2]}
Result: LessEqual[Complex[0.2655964076372759, 2.498348127732516], 1.5707963267948966]
Test Values: {Rule[k, 3]}
|
19.9#Ex3 | 1 \leq (2/\pi)\sqrt{1-\alpha^{2}}\compellintPik@{\alpha^{2}}{k}\leq 1/k^{\prime} |
1 <= (2/Pi)*sqrt(1 - (alpha)^(2))*EllipticPi((alpha)^(2), k) <= 1/(sqrt(1 - (k)^(2)))
|
1 <= (2/Pi)*Sqrt[1 - \[Alpha]^(2)]*EllipticPi[\[Alpha]^(2), (k)^2] <= 1/(Sqrt[1 - (k)^(2)])
|
Failure | Failure | Error | Failed [3 / 3]
Result: LessEqual[1.0, DirectedInfinity[], DirectedInfinity[]]
Test Values: {Rule[k, 1], Rule[α, 0.5]}
Result: LessEqual[1.0, Complex[0.4804983499812288, -0.6957733039705274], Complex[0.0, -0.5773502691896258]]
Test Values: {Rule[k, 2], Rule[α, 0.5]}
... skip entries to safe data | |
19.9.E2 | 1+\frac{{k^{\prime}}^{2}}{8} < \frac{\compellintKk@{k}}{\ln@{4/k^{\prime}}} |
|
1 +(1 - (k)^(2))/(8) < (EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2)))))
|
1 +Divide[1 - (k)^(2),8] < Divide[EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Less[1.0, Indeterminate]
Test Values: {Rule[k, 1]}
Result: Less[0.625, Complex[0.7573351019929213, 0.13305010797062605]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E2 | \frac{\compellintKk@{k}}{\ln@{4/k^{\prime}}} < 1+\frac{{k^{\prime}}^{2}}{4} |
|
(EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2))))) < 1 +(1 - (k)^(2))/(4)
|
Divide[EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]] < 1 +Divide[1 - (k)^(2),4]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Less[Indeterminate, 1.0]
Test Values: {Rule[k, 1]}
Result: Less[Complex[0.7573351019929213, 0.13305010797062605], 0.25]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E3 | 9+\frac{k^{2}{k^{\prime}}^{2}}{8} < \frac{(8+k^{2})\compellintKk@{k}}{\ln@{4/k^{\prime}}} |
|
9 +((k)^(2)*1 - (k)^(2))/(8) < ((8 + (k)^(2))*EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2)))))
|
9 +Divide[(k)^(2)*1 - (k)^(2),8] < Divide[(8 + (k)^(2))*EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Less[9.0, Indeterminate]
Test Values: {Rule[k, 1]}
Result: Less[9.0, Complex[9.088021223915057, 1.5966012956475137]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E3 | \frac{(8+k^{2})\compellintKk@{k}}{\ln@{4/k^{\prime}}} < 9.096 |
|
((8 + (k)^(2))*EllipticK(k))/(ln(4/(sqrt(1 - (k)^(2))))) < 9.096
|
Divide[(8 + (k)^(2))*EllipticK[(k)^2],Log[4/(Sqrt[1 - (k)^(2)])]] < 9.096
|
Failure | Failure | Error | Failed [3 / 3]
Result: Less[Indeterminate, 9.096]
Test Values: {Rule[k, 1]}
Result: Less[Complex[9.088021223915057, 1.5966012956475137], 9.096]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E4 | \left(\frac{1+{k^{\prime}}^{3/2}}{2}\right)^{2/3} \leq \frac{2}{\pi}\compellintEk@{k} |
|
((1 +(sqrt(1 - (k)^(2)))^(3/2))/(2))^(2/3) <= (2)/(Pi)*EllipticE(k)
|
(Divide[1 +(Sqrt[1 - (k)^(2)])^(3/2),2])^(2/3) <= Divide[2,Pi]*EllipticE[(k)^2]
|
Failure | Failure | Successful [Tested: 3] | Failed [2 / 3]
Result: LessEqual[Complex[0.2518251425072316, 0.8700591952646104], Complex[0.2586579046113418, 0.8555241748808654]]
Test Values: {Rule[k, 2]}
Result: LessEqual[Complex[0.1858923839966674, 1.6059081831429025], Complex[0.16908392457168991, 1.5904978163720476]]
Test Values: {Rule[k, 3]}
|
19.9.E4 | \frac{2}{\pi}\compellintEk@{k} \leq \left(\frac{1+{k^{\prime}}^{2}}{2}\right)^{1/2} |
|
(2)/(Pi)*EllipticE(k) <= ((1 +1 - (k)^(2))/(2))^(1/2)
|
Divide[2,Pi]*EllipticE[(k)^2] <= (Divide[1 +1 - (k)^(2),2])^(1/2)
|
Failure | Failure | Successful [Tested: 3] | Failed [2 / 3]
Result: LessEqual[Complex[0.2586579046113418, 0.8555241748808654], Complex[0.0, 1.0]]
Test Values: {Rule[k, 2]}
Result: LessEqual[Complex[0.16908392457168991, 1.5904978163720476], Complex[0.0, 1.8708286933869707]]
Test Values: {Rule[k, 3]}
|
19.9.E5 | \ln@@{\frac{(1+\sqrt{k^{\prime}})^{2}}{k}} < \frac{\pi\ccompellintKk@{k}}{2\compellintKk@{k}} |
|
ln(((1 +sqrt(sqrt(1 - (k)^(2))))^(2))/(k)) < (Pi*EllipticCK(k))/(2*EllipticK(k))
|
Log[Divide[(1 +Sqrt[Sqrt[1 - (k)^(2)]])^(2),k]] < Divide[Pi*EllipticK[1-(k)^2],2*EllipticK[(k)^2]]
|
Failure | Failure | Error | Failed [3 / 3]
Result: False
Test Values: {Rule[k, 1]}
Result: Less[Complex[0.8314429455293103, 0.8983332083070389], Complex[0.762166367418117, 0.9750101446769989]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E5 | \frac{\pi\ccompellintKk@{k}}{2\compellintKk@{k}} < \ln@@{\frac{2(1+k^{\prime})}{k}} |
|
(Pi*EllipticCK(k))/(2*EllipticK(k)) < ln((2*(1 +sqrt(1 - (k)^(2))))/(k))
|
Divide[Pi*EllipticK[1-(k)^2],2*EllipticK[(k)^2]] < Log[Divide[2*(1 +Sqrt[1 - (k)^(2)]),k]]
|
Failure | Failure | Error | Failed [2 / 3]
Result: Less[Complex[0.762166367418117, 0.9750101446769989], Complex[0.6931471805599452, 1.0471975511965976]]
Test Values: {Rule[k, 2]}
Result: Less[Complex[0.7130154358988758, 1.1147297033963086], Complex[0.6931471805599453, 1.2309594173407747]]
Test Values: {Rule[k, 3]}
|
19.9.E6 | (1-\tfrac{3}{4}k^{2})^{-1/2} < \frac{4}{\pi k^{2}}(\compellintKk@{k}-\compellintEk@{k}) |
|
(1 -(3)/(4)*(k)^(2))^(- 1/2) < (4)/(Pi*(k)^(2))*(EllipticK(k)- EllipticE(k))
|
(1 -Divide[3,4]*(k)^(2))^(- 1/2) < Divide[4,Pi*(k)^(2)]*(EllipticK[(k)^2]- EllipticE[(k)^2])
|
Failure | Failure | Error | Failed [3 / 3]
Result: Less[2.0, DirectedInfinity[]]
Test Values: {Rule[k, 1]}
Result: Less[Complex[0.0, -0.7071067811865475], Complex[0.13896654948167025, -0.7709822125950203]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E6 | \frac{4}{\pi k^{2}}(\compellintKk@{k}-\compellintEk@{k}) < (k^{\prime})^{-3/4} |
|
(4)/(Pi*(k)^(2))*(EllipticK(k)- EllipticE(k)) < (sqrt(1 - (k)^(2)))^(- 3/4)
|
Divide[4,Pi*(k)^(2)]*(EllipticK[(k)^2]- EllipticE[(k)^2]) < (Sqrt[1 - (k)^(2)])^(- 3/4)
|
Failure | Failure | Error | Failed [3 / 3]
Result: Less[DirectedInfinity[], DirectedInfinity[]]
Test Values: {Rule[k, 1]}
Result: Less[Complex[0.13896654948167025, -0.7709822125950203], Complex[0.2534656958546175, -0.6119203205285516]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E7 | (1-\tfrac{1}{4}k^{2})^{-1/2} < \frac{4}{\pi k^{2}}(\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k}) |
|
(1 -(1)/(4)*(k)^(2))^(- 1/2) < (4)/(Pi*(k)^(2))*(EllipticE(k)-1 - (k)^(2)*EllipticK(k))
|
(1 -Divide[1,4]*(k)^(2))^(- 1/2) < Divide[4,Pi*(k)^(2)]*(EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2])
|
Failure | Failure | Error | Failed [3 / 3]
Result: Less[1.1547005383792517, DirectedInfinity[]]
Test Values: {Rule[k, 1]}
Result: Less[DirectedInfinity[], Complex[-1.2621629410274844, 1.800642588058783]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E8 | k^{\prime} < \frac{\compellintEk@{k}}{\compellintKk@{k}} |
|
sqrt(1 - (k)^(2)) < (EllipticE(k))/(EllipticK(k))
|
Sqrt[1 - (k)^(2)] < Divide[EllipticE[(k)^2],EllipticK[(k)^2]]
|
Failure | Failure | Error | Failed [3 / 3]
Result: False
Test Values: {Rule[k, 1]}
Result: Less[Complex[0.0, 1.7320508075688772], Complex[-0.5907718728609501, 0.8386174564999851]]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.9.E8 | \frac{\compellintEk@{k}}{\compellintKk@{k}} < \left(\frac{1+k^{\prime}}{2}\right)^{2} |
|
(EllipticE(k))/(EllipticK(k)) < ((1 +sqrt(1 - (k)^(2)))/(2))^(2)
|
Divide[EllipticE[(k)^2],EllipticK[(k)^2]] < (Divide[1 +Sqrt[1 - (k)^(2)],2])^(2)
|
Failure | Failure | Error | Failed [2 / 3]
Result: Less[Complex[-0.5907718728609501, 0.8386174564999851], Complex[-0.4999999999999999, 0.8660254037844386]]
Test Values: {Rule[k, 2]}
Result: Less[Complex[-1.9604512687154212, 1.5690726247192568], Complex[-1.7500000000000004, 1.4142135623730951]]
Test Values: {Rule[k, 3]}
|
19.9.E9 | L(a,b) = 4a\compellintEk@{k} |
L(a , b) = 4*a*EllipticE(k)
|
L[a , b] == 4*a*EllipticE[(k)^2]
|
Error | Failure | - | Error | |
19.9.E11 | \phi \leq \incellintFk@{\phi}{k} |
|
phi <= EllipticF(sin(phi), k)
|
\[Phi] <= EllipticF[\[Phi], (k)^2]
|
Failure | Failure | Failed [4 / 30] Result: -1.500000000 <= -3.340677542
Test Values: {phi = -3/2, k = 1}
Result: -.5000000000 <= -.5222381033
Test Values: {phi = -1/2, k = 1}
... skip entries to safe data |
Failed [28 / 30]
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43180375739814203, 0.27142936483528934]]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.3965687056216178, 0.33175091278780894]]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
19.9.E12 | \incellintEk@{\phi}{k} \leq \phi |
|
EllipticE(sin(phi), k) <= phi |
EllipticE[\[Phi], (k)^2] <= \[Phi] |
Failure | Failure | Failed [4 / 30] Result: -.9974949866 <= -1.500000000
Test Values: {phi = -3/2, k = 1} Result: -.4794255386 <= -.5000000000
Test Values: {phi = -1/2, k = 1} ... skip entries to safe data |
Failed [27 / 30]
Result: LessEqual[Complex[0.43278851685803155, 0.22929764467344024], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Complex[0.44208095936294645, 0.16535187593702125], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.9.E13 | \incellintPik@{\phi}{\alpha^{2}}{0} \leq \incellintPik@{\phi}{\alpha^{2}}{k} |
|
EllipticPi(sin(phi), (alpha)^(2), 0) <= EllipticPi(sin(phi), (alpha)^(2), k) |
EllipticPi[\[Alpha]^(2), \[Phi],(0)^2] <= EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] |
Failure | Failure | Failed [8 / 90] Result: -.6351972518 <= -.6692391842
Test Values: {alpha = 3/2, phi = -1/2, k = 1} Result: -.6351972518 <= -.9273807742
Test Values: {alpha = 3/2, phi = -1/2, k = 2} ... skip entries to safe data |
Failed [84 / 90]
Result: LessEqual[Complex[0.4032669574270382, 0.3492210121777662], Complex[0.39392267303966433, 0.37152709024037445]]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Complex[0.4032669574270382, 0.3492210121777662], Complex[0.33490711362096304, 0.4200642464932446]]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.9.E14 | \frac{3}{1+\Delta+\cos@@{\phi}} < \frac{\incellintFk@{\phi}{k}}{\sin@@{\phi}} |
|
(3)/(1 + Delta + cos(phi)) < (EllipticF(sin(phi), k))/(sin(phi)) |
Divide[3,1 + \[CapitalDelta]+ Cos[\[Phi]]] < Divide[EllipticF[\[Phi], (k)^2],Sin[\[Phi]]] |
Failure | Failure | Failed [16 / 300] Result: 7.945282179 < 1.089299717
Test Values: {Delta = -3/2, phi = -1/2, k = 1} Result: 7.945282179 < 1.412977582
Test Values: {Delta = -3/2, phi = -1/2, k = 2} ... skip entries to safe data |
Failed [284 / 300]
Result: Less[Complex[1.261572446843062, -0.07667841479591199], Complex[1.0384958486950706, 0.07695378095553612]]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Less[Complex[1.261572446843062, -0.07667841479591199], Complex[1.0325857379409573, 0.21946385233164167]]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.9.E14 | \frac{\incellintFk@{\phi}{k}}{\sin@@{\phi}} < \frac{1}{(\Delta\cos@@{\phi})^{1/3}} |
|
(EllipticF(sin(phi), k))/(sin(phi)) < (1)/((Delta*cos(phi))^(1/3)) |
Divide[EllipticF[\[Phi], (k)^2],Sin[\[Phi]]] < Divide[1,(\[CapitalDelta]*Cos[\[Phi]])^(1/3)] |
Failure | Failure | Failed [20 / 300] Result: 1.675417084 < 1.170093898
Test Values: {Delta = -3/2, phi = -2, k = 1} Result: 1.675417084 < 1.170093898
Test Values: {Delta = -3/2, phi = 2, k = 1} ... skip entries to safe data |
Failed [298 / 300]
Result: Less[Complex[1.0384958486950706, 0.07695378095553612], Complex[1.2731409874856745, -0.17545913345292982]]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Less[Complex[1.0325857379409573, 0.21946385233164167], Complex[1.2731409874856745, -0.17545913345292982]]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.9.E15 | 1 < \incellintFk@{\phi}{k}\bigg{/}\left((\sin@@{\phi})\ln@{\frac{4}{\Delta+\cos@@{\phi}}}\right) |
|
1 < EllipticF(sin(phi), k)/((sin(phi))*ln((4)/(Delta + cos(phi)))) |
1 < EllipticF[\[Phi], (k)^2]/((Sin[\[Phi]])*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]]) |
Failure | Failure | Failed [6 / 300] Result: 1. < .4615167558
Test Values: {Delta = -1/2, phi = -1/2, k = 1} Result: 1. < .5986532627
Test Values: {Delta = -1/2, phi = -1/2, k = 2} ... skip entries to safe data |
Failed [288 / 300]
Result: Less[1.0, Complex[0.9573719244599448, 0.16621131448588694]]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Less[1.0, Complex[0.9388814261604885, 0.2980132161872323]]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.9.E15 | \incellintFk@{\phi}{k}\bigg{/}\left((\sin@@{\phi})\ln@{\frac{4}{\Delta+\cos@@{\phi}}}\right) < \frac{4}{2+(1+k^{2})\sin^{2}@@{\phi}} |
|
EllipticF(sin(phi), k)/((sin(phi))*ln((4)/(Delta + cos(phi)))) < (4)/(2 +(1 + (k)^(2))*(sin(phi))^(2)) |
EllipticF[\[Phi], (k)^2]/((Sin[\[Phi]])*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]]) < Divide[4,2 +(1 + (k)^(2))*(Sin[\[Phi]])^(2)] |
Failure | Failure | Failed [20 / 300] Result: 3.582850518 < 1.002508151
Test Values: {Delta = 3/2, phi = -3/2, k = 1} Result: 3.582850518 < 1.002508151
Test Values: {Delta = 3/2, phi = 3/2, k = 1} ... skip entries to safe data |
Failed [296 / 300]
Result: Less[Complex[0.9573719244599448, 0.16621131448588694], Complex[1.7102149955099495, -0.29913282294542826]]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Less[Complex[0.9388814261604885, 0.2980132161872323], Complex[1.3149325512421652, -0.4880625346303866]]
Test Values: {Rule[k, 2], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.9.E16 | \incellintFk@{\phi}{k} = \frac{2}{\pi}\compellintKk@{k^{\prime}}\ln@{\frac{4}{\Delta+\cos@@{\phi}}}-\theta\Delta^{2} |
EllipticF(sin(phi), k) = (2)/(Pi)*EllipticK(sqrt(1 - (k)^(2)))*ln((4)/(Delta + cos(phi)))- theta*(Delta)^(2) |
EllipticF[\[Phi], (k)^2] == Divide[2,Pi]*EllipticK[(Sqrt[1 - (k)^(2)])^2]*Log[Divide[4,\[CapitalDelta]+ Cos[\[Phi]]]]- \[Theta]*\[CapitalDelta]^(2) |
Failure | Failure | Failed [30 / 30] Result: 2.264395299+.9232968251*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 3/2, theta = 1/2, k = 1} Result: -.185868314e-1+.7122804653*I
Test Values: {Delta = 1/2*3^(1/2)+1/2*I, phi = 1/2, theta = 1/2, k = 1} ... skip entries to safe data |
Failed [30 / 30]
Result: Complex[1.4412941413043292, 0.5689187621917111]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, 0.5], Rule[ϕ, 1.5]} Result: Complex[-0.5132046492108906, 0.2967418012807382]
Test Values: {Rule[k, 1], Rule[Δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, 0.5], Rule[ϕ, 0.5]} ... skip entries to safe data | |
19.9.E17 | L \leq \incellintFk@{\phi}{k} |
|
L <= EllipticF(sin(phi), k) |
L <= EllipticF[\[Phi], (k)^2] |
Failure | Failure | Failed [24 / 300] Result: -1.500000000 <= -3.340677542
Test Values: {L = -3/2, phi = -3/2, k = 1} Result: -1.500000000 <= -1.523452443
Test Values: {L = -3/2, phi = -2, k = 1} ... skip entries to safe data |
Failed [288 / 300]
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43180375739814203, 0.27142936483528934]]
Test Values: {Rule[k, 1], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.3965687056216178, 0.33175091278780894]]
Test Values: {Rule[k, 2], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.9.E17 | \incellintFk@{\phi}{k} \leq \sqrt{UL} |
|
EllipticF(sin(phi), k) <= sqrt(U*L) |
EllipticF[\[Phi], (k)^2] <= Sqrt[U*L] |
Failure | Failure | Successful [Tested: 300] | Failed [300 / 300]
Result: LessEqual[Complex[0.43180375739814203, 0.27142936483528934], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[k, 1], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Complex[0.3965687056216178, 0.33175091278780894], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[k, 2], Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.9.E17 | \sqrt{UL} \leq \tfrac{1}{2}(U+L) |
|
sqrt(U*L) <= (1)/(2)*(U + L) |
Sqrt[U*L] <= Divide[1,2]*(U + L) |
Failure | Failure | Failed [9 / 100] Result: 1.500000000 <= -1.500000000
Test Values: {L = -3/2, U = -3/2} Result: .8660254040 <= -1.
Test Values: {L = -3/2, U = -1/2} ... skip entries to safe data |
Failed [91 / 100]
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Complex[0.12940952255126037, 0.48296291314453416], Complex[0.09150635094610973, 0.34150635094610965]]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.9.E17 | \tfrac{1}{2}(U+L) \leq U |
|
(1)/(2)*(U + L) <= U |
Divide[1,2]*(U + L) <= U |
Failure | Failure | Failed [15 / 100] Result: -1.750000000 <= -2.
Test Values: {L = -3/2, U = -2} Result: 0. <= -1.500000000
Test Values: {L = 3/2, U = -3/2} ... skip entries to safe data |
Failed [79 / 100]
Result: LessEqual[Complex[0.43301270189221935, 0.24999999999999997], Complex[0.43301270189221935, 0.24999999999999997]]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Complex[0.09150635094610973, 0.34150635094610965], Complex[-0.2499999999999999, 0.43301270189221935]]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.9#Ex4 | L = (1/\sigma)\atanh@{\sigma\sin@@{\phi}} |
L = (1/sigma)*arctanh(sigma*sin(phi)) |
L == (1/\[Sigma])*ArcTanh[\[Sigma]*Sin[\[Phi]]] |
Failure | Failure | Failed [300 / 300] Result: .1841715885+.458206673e-1*I
Test Values: {L = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I} Result: -.197696883e-1+.4084290873*I
Test Values: {L = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, sigma = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.008169183554908921, 0.015254361571334585]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[σ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.6990489693230986, -0.19299436497537428]
Test Values: {Rule[L, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[σ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data | |
19.9#Ex5 | U = \tfrac{1}{2}\atanh@{\sin@@{\phi}}+\tfrac{1}{2}k^{-1}\atanh@{k\sin@@{\phi}} |
|
U = (1)/(2)*arctanh(sin(phi))+(1)/(2)*(k)^(- 1)* arctanh(k*sin(phi)) |
U == Divide[1,2]*ArcTanh[Sin[\[Phi]]]+Divide[1,2]*(k)^(- 1)* ArcTanh[k*Sin[\[Phi]]] |
Failure | Failure | Failed [300 / 300] Result: .451553750e-1-.1773780507*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 1} Result: .3250459090-.1674857034*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.0012089444940770466, -0.021429364835289427]
Test Values: {Rule[k, 1], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.04320077983427789, -0.07655275524887523]
Test Values: {Rule[k, 2], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |