Weierstrass Elliptic and Modular Functions - 23.15 Definitions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
23.15.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q = \exp@{-\pi\frac{\ccompellintKk@{k}}{\compellintKk@{k}}}}
q = \exp@{-\pi\frac{\ccompellintKk@{k}}{\compellintKk@{k}}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | q = exp(- Pi*(EllipticCK(k))/(EllipticK(k)))
|
q == Exp[- Pi*Divide[EllipticK[1-(k)^2],EllipticK[(k)^2]]]
|
Failure | Failure | Error | Failed [30 / 30]
Result: Complex[-0.1339745962155613, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.9466424242240871, 0.7022944994770247]
Test Values: {Rule[k, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
23.15#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k = \frac{\Jacobithetaq{2}^{2}@{0}{q}}{\Jacobithetaq{3}^{2}@{0}{q}}}
k = \frac{\Jacobithetaq{2}^{2}@{0}{q}}{\Jacobithetaq{3}^{2}@{0}{q}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | k = ((JacobiTheta2(0, q))^(2))/((JacobiTheta3(0, q))^(2))
|
k == Divide[(EllipticTheta[2, 0, q])^(2),(EllipticTheta[3, 0, q])^(2)]
|
Failure | Failure | Error | Failed [5 / 30]
Result: Complex[1.0, -308.9309168668012]
Test Values: {Rule[k, 1], Rule[q, -0.5]}
Result: Complex[2.0, -308.9309168668012]
Test Values: {Rule[k, 2], Rule[q, -0.5]}
... skip entries to safe data |
23.15.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathcal{A}\tau = \frac{a\tau+b}{c\tau+d}}
\mathcal{A}\tau = \frac{a\tau+b}{c\tau+d} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | A*tau = (a*tau + b)/(c*tau + d) |
A*\[Tau] == Divide[a*\[Tau]+ b,c*\[Tau]+ d] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.15.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle ad-bc = 1}
ad-bc = 1 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | a*d - b*c = 1 |
a*d - b*c == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.15.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modularlambdatau@{\tau} = \frac{\Jacobithetaq{2}^{4}@{0}{q}}{\Jacobithetaq{3}^{4}@{0}{q}}}
\modularlambdatau@{\tau} = \frac{\Jacobithetaq{2}^{4}@{0}{q}}{\Jacobithetaq{3}^{4}@{0}{q}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
ModularLambda[\[Tau]] == Divide[(EllipticTheta[2, 0, q])^(4),(EllipticTheta[3, 0, q])^(4)]
|
Missing Macro Error | Failure | - | Failed [4 / 100]
Result: Complex[95438.81139616246, 21.966995277463894]
Test Values: {Rule[q, -0.5], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[95438.81139616246, -0.8660254037844387]
Test Values: {Rule[q, -0.5], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
23.15.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KleincompinvarJtau@{\tau} = \frac{\left(\Jacobithetaq{2}^{8}@{0}{q}+\Jacobithetaq{3}^{8}@{0}{q}+\Jacobithetaq{4}^{8}@{0}{q}\right)^{3}}{54\left(\Jacobithetaq{1}'@{0}{q}\right)^{8}}}
\KleincompinvarJtau@{\tau} = \frac{\left(\Jacobithetaq{2}^{8}@{0}{q}+\Jacobithetaq{3}^{8}@{0}{q}+\Jacobithetaq{4}^{8}@{0}{q}\right)^{3}}{54\left(\Jacobithetaq{1}'@{0}{q}\right)^{8}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
KleinInvariantJ[\[Tau]] == Divide[((EllipticTheta[2, 0, q])^(8)+ (EllipticTheta[3, 0, q])^(8)+ (EllipticTheta[4, 0, q])^(8))^(3),54*(D[EllipticTheta[1, 0, q], {0, 1}])^(8)]
|
Missing Macro Error | Failure | - | Failed [100 / 100]
Result: Plus[Complex[-71.08223570333668, -2.1851275073468844*^-14], Times[-0.018518518518518517, Power[D[0.0
Test Values: {0.0, 1.0}], -8], Power[Plus[Power[EllipticTheta[2, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], 8], Power[EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], 8], Power[EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], 8]], 3]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Times[-0.018518518518518517, Power[D[0.0
Test Values: {0.0, 1.0}], -8], Power[Plus[Power[EllipticTheta[2, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], 8], Power[EllipticTheta[3, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], 8], Power[EllipticTheta[4, 0.0, Complex[0.8660254037844387, 0.49999999999999994]], 8]], 3]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
23.15.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = \left(\tfrac{1}{2}\Jacobithetaq{1}'@{0}{q}\right)^{1/3}}
\Dedekindeta@{\tau} = \left(\tfrac{1}{2}\Jacobithetaq{1}'@{0}{q}\right)^{1/3} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
DedekindEta[\[Tau]] == (Divide[1,2]*D[EllipticTheta[1, 0, q], {0, 1}])^(1/3)
|
Missing Macro Error | Failure | - | Failed [10 / 10]
Result: Plus[0.7682254223260567, Times[-0.7937005259840998, Power[D[0.0
Test Values: {0.0, 1.0}], Rational[1, 3]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}
Result: Plus[0.7682254223260567, Times[-0.7937005259840998, Power[D[0.0
Test Values: {0.0, 1.0}], Rational[1, 3]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}
... skip entries to safe data |
23.15.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\tfrac{1}{2}\Jacobithetaq{1}'@{0}{q}\right)^{1/3} = e^{i\pi\tau/12}\Jacobithetatau{3}@{\tfrac{1}{2}\pi(1+\tau)}{3\tau}}
\left(\tfrac{1}{2}\Jacobithetaq{1}'@{0}{q}\right)^{1/3} = e^{i\pi\tau/12}\Jacobithetatau{3}@{\tfrac{1}{2}\pi(1+\tau)}{3\tau} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | ((1)/(2)*diff( JacobiTheta1(0, q), 0$(1) ))^(1/3) = exp(I*Pi*tau/12)*JacobiTheta3((1)/(2)*Pi*(1 + tau),exp(I*Pi*3*tau))
|
(Divide[1,2]*D[EllipticTheta[1, 0, q], {0, 1}])^(1/3) == Exp[I*Pi*\[Tau]/12]*EllipticTheta[3, Divide[1,2]*Pi*(1 + \[Tau]), Exp[I*Pi*(3*\[Tau])]]
|
Error | Failure | - | Failed [10 / 10]
Result: Plus[Complex[-0.7682254223260567, 1.7569052324234997*^-19], Times[0.7937005259840998, Power[D[0.0
Test Values: {0.0, 1.0}], Rational[1, 3]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}
Result: Plus[Complex[-0.7682254223260567, 1.7569052324234997*^-19], Times[0.7937005259840998, Power[D[0.0
Test Values: {0.0, 1.0}], Rational[1, 3]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}
... skip entries to safe data |