Combinatorial Analysis - 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions

From testwiki
Revision as of 12:05, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \multinomial{n_{1}+n_{2}}{n_{1},n_{2}} = \binom{n_{1}+n_{2}}{n_{1}}}
\multinomial{n_{1}+n_{2}}{n_{1},n_{2}} = \binom{n_{1}+n_{2}}{n_{1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
multinomial(n[1]+ n[2], n[1], n[2]) = binomial(n[1]+ n[2],n[1])
Multinomial[Subscript[n, 1]+ Subscript[n, 2]] == Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 1]]
Failure Failure Error
Failed [100 / 100]
Result: Complex[-0.4855310647423219, -0.7913166384345096]
Test Values: {Rule[Subscript[n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[n, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5823425344168771, -0.5778520047366285]
Test Values: {Rule[Subscript[n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[n, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
26.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n_{1}+n_{2}}{n_{1}} = \binom{n_{1}+n_{2}}{n_{2}}}
\binom{n_{1}+n_{2}}{n_{1}} = \binom{n_{1}+n_{2}}{n_{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
binomial(n[1]+ n[2],n[1]) = binomial(n[1]+ n[2],n[2])
Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 1]] == Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 2]]
Failure Successful Error
Failed [6 / 100]
Result: Indeterminate
Test Values: {Rule[Subscript[n, 1], -1.5], Rule[Subscript[n, 2], -1.5]}

Result: Indeterminate
Test Values: {Rule[Subscript[n, 1], -1.5], Rule[Subscript[n, 2], -0.5]}

... skip entries to safe data