Functions of Number Theory - 27.9 Quadratic Characters

From testwiki
Revision as of 12:06, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.9.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Legendresym{-1}{p} = (-1)^{(p-1)/2}}
\Legendresym{-1}{p} = (-1)^{(p-1)/2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
LegendreSymbol(- 1, p) = (- 1)^((p - 1)/2)
Error
Failure Missing Macro Error Error -
27.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Legendresym{2}{p} = (-1)^{(p^{2}-1)/8}}
\Legendresym{2}{p} = (-1)^{(p^{2}-1)/8}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
LegendreSymbol(2, p) = (- 1)^(((p)^(2)- 1)/8)
Error
Failure Missing Macro Error Error -
27.9.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Legendresym{p}{q}\Legendresym{q}{p} = (-1)^{(p-1)(q-1)/4}}
\Legendresym{p}{q}\Legendresym{q}{p} = (-1)^{(p-1)(q-1)/4}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
LegendreSymbol(p, q)*LegendreSymbol(q, p) = (- 1)^((p - 1)*(q - 1)/4)
Error
Failure Missing Macro Error Error -