Coulomb Functions - 34.1 Special Notation
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
34.1.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}}
\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (- 1)^(Subscript[j, 1]- Subscript[j, 2]+ Subscript[m, 3])*(2*Subscript[j, 3]+ 1)^(Divide[1,2])* ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[m, 1], - Subscript[m, 3]}]
|
Missing Macro Error | Failure | - | Successful [Tested: 300] |