Results of Combinatorial Analysis
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
26.3.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{m}{n} = \binom{m}{m-n}} | binomial(m,n) = binomial(m,m - n) |
Binomial[m,n] == Binomial[m,m - n] |
Failure | Successful | Successful [Tested: 6] | Successful [Tested: 6] |
26.3.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{m}{m-n} = \frac{m!}{(m-n)!\,n!}} | binomial(m,m - n) = (factorial(m))/(factorial(m - n)*factorial(n)) |
Binomial[m,m - n] == Divide[(m)!,(m - n)!*(n)!] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 6] |
26.3.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{m}{n} = 0} | binomial(m,n) = 0 |
Binomial[m,n] == 0 |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.3.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{m}\binom{m}{n}x^{n} = (1+x)^{m}} | sum(binomial(m,n)*(x)^(n), n = 0..m) = (1 + x)^(m) |
Sum[Binomial[m,n]*(x)^(n), {n, 0, m}, GenerateConditions->None] == (1 + x)^(m) |
Successful | Successful | - | Successful [Tested: 0] |
26.3.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{m=0}^{\infty}\binom{m+n}{m}x^{m} = \frac{1}{(1-x)^{n+1}}} | sum(binomial(m + n,m)*(x)^(m), m = 0..infinity) = (1)/((1 - x)^(n + 1)) |
Sum[Binomial[m + n,m]*(x)^(m), {m, 0, Infinity}, GenerateConditions->None] == Divide[1,(1 - x)^(n + 1)] |
Successful | Successful | - | Successful [Tested: 3] |
26.3.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{m}{n} = \binom{m-1}{n}+\binom{m-1}{n-1}} | binomial(m,n) = binomial(m - 1,n)+binomial(m - 1,n - 1) |
Binomial[m,n] == Binomial[m - 1,n]+Binomial[m - 1,n - 1] |
Successful | Successful | - | Successful [Tested: 6] |
26.3.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{m}{n} = \frac{m}{n}\binom{m-1}{n-1}} | binomial(m,n) = (m)/(n)*binomial(m - 1,n - 1) |
Binomial[m,n] == Divide[m,n]*Binomial[m - 1,n - 1] |
Successful | Successful | - | Successful [Tested: 6] |
26.3.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{m}{n}\binom{m-1}{n-1} = \frac{m-n+1}{n}\binom{m}{n-1}} | (m)/(n)*binomial(m - 1,n - 1) = (m - n + 1)/(n)*binomial(m,n - 1) |
Divide[m,n]*Binomial[m - 1,n - 1] == Divide[m - n + 1,n]*Binomial[m,n - 1] |
Successful | Successful | - | Successful [Tested: 6] |
26.3.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{m+1}{n+1} = \sum_{k=n}^{m}\binom{k}{n}} | binomial(m + 1,n + 1) = sum(binomial(k,n), k = n..m) |
Binomial[m + 1,n + 1] == Sum[Binomial[k,n], {k, n, m}, GenerateConditions->None] |
Successful | Successful | - | Successful [Tested: 6] |
26.3.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{m}{n} = \sum_{k=0}^{n}\binom{m-n-1+k}{k}} | binomial(m,n) = sum(binomial(m - n - 1 + k,k), k = 0..n) |
Binomial[m,n] == Sum[Binomial[m - n - 1 + k,k], {k, 0, n}, GenerateConditions->None] |
Successful | Successful | - | Failed [3 / 6]
{Indeterminate <- {Rule[m, 1], Rule[n, 1]} Indeterminate <- {Rule[m, 2], Rule[n, 2]} |
26.3.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n}{0} = \binom{n}{n}} | binomial(n,0) = binomial(n,n) |
Binomial[n,0] == Binomial[n,n] |
Successful | Successful | - | Successful [Tested: 3] |
26.3.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n}{n} = 1} | binomial(n,n) = 1 |
Binomial[n,n] == 1 |
Successful | Successful | - | Successful [Tested: 3] |
26.3.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{m}{n} = \sum_{k=0}^{n}(-1)^{n-k}\binom{m+1}{k}} | binomial(m,n) = sum((- 1)^(n - k)*binomial(m + 1,k), k = 0..n) |
Binomial[m,n] == Sum[(- 1)^(n - k)*Binomial[m + 1,k], {k, 0, n}, GenerateConditions->None] |
Successful | Failure | - | Successful [Tested: 6] |
26.4.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \multinomial{n_{1}+n_{2}}{n_{1},n_{2}} = \binom{n_{1}+n_{2}}{n_{1}}} | multinomial(n[1]+ n[2], n[1], n[2]) = binomial(n[1]+ n[2],n[1]) |
Multinomial[Subscript[n, 1]+ Subscript[n, 2]] == Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 1]] |
Failure | Failure | Error | Failed [100 / 100]
{Complex[-0.4855310647423219, -0.7913166384345096] <- {Rule[Subscript[n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[n, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[0.5823425344168771, -0.5778520047366285] <- {Rule[Subscript[n, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[n, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
26.4.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n_{1}+n_{2}}{n_{1}} = \binom{n_{1}+n_{2}}{n_{2}}} | binomial(n[1]+ n[2],n[1]) = binomial(n[1]+ n[2],n[2]) |
Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 1]] == Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 2]] |
Failure | Successful | Error | Failed [6 / 100]
{Indeterminate <- {Rule[Subscript[n, 1], -1.5], Rule[Subscript[n, 2], -1.5]} Indeterminate <- {Rule[Subscript[n, 1], -1.5], Rule[Subscript[n, 2], -0.5]} |
26.5.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}} | (1)/(n + 1)*binomial(2*n,n) = (1)/(2*n + 1)*binomial(2*n + 1,n) |
Divide[1,n + 1]*Binomial[2*n,n] == Divide[1,2*n + 1]*Binomial[2*n + 1,n] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 3] |
26.5.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2n+1}\binom{2n+1}{n} = \binom{2n}{n}-\binom{2n}{n-1}} | (1)/(2*n + 1)*binomial(2*n + 1,n) = binomial(2*n,n)-binomial(2*n,n - 1) |
Divide[1,2*n + 1]*Binomial[2*n + 1,n] == Binomial[2*n,n]-Binomial[2*n,n - 1] |
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 3] |
26.5.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{2n}{n}-\binom{2n}{n-1} = \binom{2n-1}{n}-\binom{2n-1}{n+1}} | binomial(2*n,n)-binomial(2*n,n - 1) = binomial(2*n - 1,n)-binomial(2*n - 1,n + 1) |
Binomial[2*n,n]-Binomial[2*n,n - 1] == Binomial[2*n - 1,n]-Binomial[2*n - 1,n + 1] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.6.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{m,n=0}^{\infty}D(m,n)x^{m}y^{n} = \frac{1}{1-x-y-xy}} | sum(sum(D*(m , n)* (x)^(m)* (y)^(n), n = 0..infinity), m = 0..infinity) = (1)/(1 - x - y - x*y) |
Sum[Sum[D*(m , n)* (x)^(m)* (y)^(n), {n, 0, Infinity}, GenerateConditions->None], {m, 0, Infinity}, GenerateConditions->None] == Divide[1,1 - x - y - x*y] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.6.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}D(n,n)x^{n} = \frac{1}{\sqrt{1-6x+x^{2}}}} | sum(D*(n , n)* (x)^(n), n = 0..infinity) = (1)/(sqrt(1 - 6*x + (x)^(2))) |
Sum[D*(n , n)* (x)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[1 - 6*x + (x)^(2)]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.6.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}M(n)x^{n} = \frac{1-x-\sqrt{1-2x-3x^{2}}}{2x^{2}}} | sum(M*(n)* (x)^(n), n = 0..infinity) = (1 - x -sqrt(1 - 2*x - 3*(x)^(2)))/(2*(x)^(2)) |
Sum[M*(n)* (x)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1 - x -Sqrt[1 - 2*x - 3*(x)^(2)],2*(x)^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.6.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n,k=1}^{\infty}N(n,k)x^{n}y^{k} = \frac{1-x-xy-\sqrt{(1-x-xy)^{2}-4x^{2}y}}{2x}} | sum(sum(N*(n , k)* (x)^(n)* (y)^(k), k = 1..infinity), n = 1..infinity) = (1 - x - x*y -sqrt((1 - x - x*y)^(2)- 4*(x)^(2)* y))/(2*x) |
Sum[Sum[N*(n , k)* (x)^(n)* (y)^(k), {k, 1, Infinity}, GenerateConditions->None], {n, 1, Infinity}, GenerateConditions->None] == Divide[1 - x - x*y -Sqrt[(1 - x - x*y)^(2)- 4*(x)^(2)* y],2*x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.6.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}r(n)x^{n} = \frac{1-x-\sqrt{1-6x+x^{2}}}{2x}} | sum(r*(n)* (x)^(n), n = 0..infinity) = (1 - x -sqrt(1 - 6*x + (x)^(2)))/(2*x) |
Sum[r*(n)* (x)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1 - x -Sqrt[1 - 6*x + (x)^(2)],2*x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.6.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D(m,n) = D(m,n-1)+D(m-1,n)+D(m-1,n-1)} | D*(m , n) = D*(m , n - 1)+ D*(m - 1 , n)+ D*(m - 1 , n - 1) |
D*(m , n) == D*(m , n - 1)+ D*(m - 1 , n)+ D*(m - 1 , n - 1) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.6.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(n) = M(n-1)+\sum_{k=2}^{n}M(k-2)\,M(n-k)} | M*(n) = M*(n - 1)+ sum(M*(k - 2)* M*(n - k), k = 2..n) |
M*(n) == M*(n - 1)+ Sum[M*(k - 2)* M*(n - k), {k, 2, n}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.7.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{0} = 1} | BellB(0, 1) = 1 |
BellB[0] == 1 |
Successful | Successful | - | Successful [Tested: 1] |
26.7.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n} = \sum_{k=0}^{n}\StirlingnumberS@{n}{k}} | BellB(n, 1) = sum(Stirling2(n, k), k = 0..n) |
BellB[n] == Sum[StirlingS2[n, k], {k, 0, n}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
26.7.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n} = \sum_{k=1}^{m}\frac{k^{n}}{k!}\sum_{j=0}^{m-k}\frac{(-1)^{j}}{j!}} | BellB(n, 1) = sum(((k)^(n))/(factorial(k))*sum(((- 1)^(j))/(factorial(j)), j = 0..m - k), k = 1..m) |
BellB[n] == Sum[Divide[(k)^(n),(k)!]*Sum[Divide[(- 1)^(j),(j)!], {j, 0, m - k}, GenerateConditions->None], {k, 1, m}, GenerateConditions->None] |
Error | Failure | - | Successful [Tested: 6] |
26.7.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n} = \expe^{-1}\sum_{k=1}^{\infty}\frac{k^{n}}{k!}} | BellB(n, 1) = exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..infinity) |
BellB[n] == Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, Infinity}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.7.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expe^{-1}\sum_{k=1}^{\infty}\frac{k^{n}}{k!} = 1+\floor{\expe^{-1}\sum_{k=1}^{2n}\frac{k^{n}}{k!}}} | exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..infinity) = 1 + floor(exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..2*n)) |
Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, Infinity}, GenerateConditions->None] == 1 + Floor[Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, 2*n}, GenerateConditions->None]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.7.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\Bellnumber@{n}\frac{x^{n}}{n!} = \exp(\expe^{x}-1)} | sum(BellB(n, 1)*((x)^(n))/(factorial(n)), n = 0..infinity) = exp(exp(x)- 1) |
Sum[BellB[n]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Exp[Exp[x]- 1] |
Translation Error | Translation Error | - | - |
26.7.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n+1} = \sum_{k=0}^{n}\binom{n}{k}\Bellnumber@{k}} | BellB(n + 1, 1) = sum(binomial(n,k)*BellB(k, 1), k = 0..n) |
BellB[n + 1] == Sum[Binomial[n,k]*BellB[k], {k, 0, n}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.7#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n+1} = \sum_{k=0}^{n}\binom{n}{k}\Bellnumber@{n}} | BellB(n + 1, 1) = sum(binomial(n,k)*BellB(n, 1), k = 0..n) |
BellB[n + 1] == Sum[Binomial[n,k]*BellB[n], {k, 0, n}, GenerateConditions->None] |
Failure | Failure | Failed [2 / 3] 2/3]: [[-3. <- {n = 2} -25. <- {n = 3} |
Failed [2 / 3]
{-3.0 <- {Rule[n, 2]} -25.0 <- {Rule[n, 3]} |
26.7.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle N\ln@@{N} = n} | N*ln(N) = n |
N*Log[N] == n |
Failure | Failure | Failed [30 / 30] 30/30]: [[-1.261799388+.4534498412*I <- {N = 1/2*3^(1/2)+1/2*I, n = 1} -2.261799388+.4534498412*I <- {N = 1/2*3^(1/2)+1/2*I, n = 2} |
Failed [30 / 30]
{Complex[-1.2617993877991494, 0.4534498410585544] <- {Rule[n, 1], Rule[N, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-2.261799387799149, 0.4534498410585544] <- {Rule[n, 2], Rule[N, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
26.8.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Stirlingnumbers@{n}{n} = 1} | Stirling1(n, n) = 1 |
StirlingS1[n, n] == 1 |
Successful | Failure | - | Successful [Tested: 3] |
26.8.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Stirlingnumbers@{1}{k} = \Kroneckerdelta{1}{k}} | Stirling1(1, k) = KroneckerDelta[1, k] |
StirlingS1[1, k] == KroneckerDelta[1, k] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.8.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{n} = 1} | Stirling2(n, n) = 1 |
StirlingS2[n, n] == 1 |
Successful | Failure | - | Successful [Tested: 3] |
26.8.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{k} = \frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^{n}} | Stirling2(n, k) = (1)/(factorial(k))*sum((- 1)^(k - j)*binomial(k,j)*(j)^(n), j = 0..k) |
StirlingS2[n, k] == Divide[1,(k)!]*Sum[(- 1)^(k - j)*Binomial[k,j]*(j)^(n), {j, 0, k}, GenerateConditions->None] |
Aborted | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}\Stirlingnumbers@{n}{k}x^{k} = (x-n+1)_{n}} | sum(Stirling1(n, k)*(x)^(k), k = 0..n) = x - n + 1[n] |
Sum[StirlingS1[n, k]*(x)^(k), {k, 0, n}, GenerateConditions->None] == Subscript[x - n + 1, n] |
Failure | Failure | Error | Failed [9 / 9]
{Plus[1.5, Times[-1.0, Subscript[1.5, 1]]] <- {Rule[n, 1], Rule[x, 1.5]} Plus[0.75, Times[-1.0, Subscript[0.5, 2]]] <- {Rule[n, 2], Rule[x, 1.5]} |
26.8.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!} = \frac{(\ln@{1+x})^{k}}{k!}} | sum(Stirling1(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity) = ((ln(1 + x))^(k))/(factorial(k)) |
Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Divide[(Log[1 + x])^(k),(k)!] |
Error | Failure | - | Failed [2 / 3]
{Plus[-0.08220097694658271, NSum[Times[Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, 2]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[k, 2], Rule[x, 0.5]} Plus[-0.011109876001414293, NSum[Times[Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, 3]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[k, 3], Rule[x, 0.5]} |
26.8.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n,k=0}^{\infty}\Stirlingnumbers@{n}{k}\frac{x^{n}}{n!}y^{k} = (1+x)^{y}} | sum(sum(Stirling1(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity) = (1 + x)^(y) |
Sum[Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == (1 + x)^(y) |
Error | Failure | - | Failed [6 / 6]
{Plus[-0.5443310539518174, NSum[Sum[Times[Power[-1.5, k], Power[0.5, n], Power[Factorial[n], -1], StirlingS1[n, k]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 0.5], Rule[y, -1.5]} Plus[-1.8371173070873836, NSum[Sum[Times[Power[0.5, n], Power[1.5, k], Power[Factorial[n], -1], StirlingS1[n, k]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]], {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 0.5], Rule[y, 1.5]} |
26.8.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{n}\StirlingnumberS@{n}{k}(x-k+1)_{k} = x^{n}} | sum(Stirling2(n, k)*x - k + 1[k], k = 1..n) = (x)^(n) |
Sum[StirlingS2[n, k]*Subscript[x - k + 1, k], {k, 1, n}, GenerateConditions->None] == (x)^(n) |
Failure | Failure | Error | Failed [9 / 9]
{Plus[-1.5, Subscript[1.5, 1]] <- {Rule[n, 1], Rule[x, 1.5]} Plus[-2.25, Subscript[0.5, 2], Subscript[1.5, 1]] <- {Rule[n, 2], Rule[x, 1.5]} |
26.8.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!} = \frac{(\expe^{x}-1)^{k}}{k!}} | sum(Stirling2(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity) = ((exp(x)- 1)^(k))/(factorial(k)) |
Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Divide[(Exp[x]- 1)^(k),(k)!] |
Failure | Failure | Error | Successful [Tested: 9] |
26.8.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n,k=0}^{\infty}\StirlingnumberS@{n}{k}\frac{x^{n}}{n!}y^{k} = \exp\left(y(\expe^{x}-1)\right)} | sum(sum(Stirling2(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity) = exp(y*(exp(x)- 1)) |
Sum[Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == Exp[y*(Exp[x]- 1)] |
Translation Error | Translation Error | - | - |
26.8#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Stirlingnumbers@{n}{0} = 0} | Stirling1(n, 0) = 0 |
StirlingS1[n, 0] == 0 |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.8#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Stirlingnumbers@{n}{1} = (-1)^{n-1}(n-1)!} | Stirling1(n, 1) = (- 1)^(n - 1)*factorial(n - 1) |
StirlingS1[n, 1] == (- 1)^(n - 1)*(n - 1)! |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.8.E16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\Stirlingnumbers@{n}{n-1} = \StirlingnumberS@{n}{n-1}} | - Stirling1(n, n - 1) = Stirling2(n, n - 1) |
- StirlingS1[n, n - 1] == StirlingS2[n, n - 1] |
Successful | Failure | - | Successful [Tested: 3] |
26.8.E16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{n-1} = \binom{n}{2}} | Stirling2(n, n - 1) = binomial(n,2) |
StirlingS2[n, n - 1] == Binomial[n,2] |
Successful | Failure | - | Successful [Tested: 3] |
26.8#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{0} = 0} | Stirling2(n, 0) = 0 |
StirlingS2[n, 0] == 0 |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.8#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{1} = 1} | Stirling2(n, 1) = 1 |
StirlingS2[n, 1] == 1 |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.8#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{2} = 2^{n-1}-1} | Stirling2(n, 2) = (2)^(n - 1)- 1 |
StirlingS2[n, 2] == (2)^(n - 1)- 1 |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.8.E18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Stirlingnumbers@{n}{k} = \Stirlingnumbers@{n-1}{k-1}-(n-1)\Stirlingnumbers@{n-1}{k}} | Stirling1(n, k) = Stirling1(n - 1, k - 1)-(n - 1)* Stirling1(n - 1, k) |
StirlingS1[n, k] == StirlingS1[n - 1, k - 1]-(n - 1)* StirlingS1[n - 1, k] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E19 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{k}{h}\Stirlingnumbers@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\Stirlingnumbers@{n-j}{h}\Stirlingnumbers@{j}{k-h}} | binomial(k,h)*Stirling1(n, k) = sum(binomial(n,j)*Stirling1(n - j, h)*Stirling1(j, k - h), j = k - h..n - h) |
Binomial[k,h]*StirlingS1[n, k] == Sum[Binomial[n,j]*StirlingS1[n - j, h]*StirlingS1[j, k - h], {j, k - h, n - h}, GenerateConditions->None] |
Error | Failure | - | Failed [11 / 30]
{0.16976527263135505 <- {Rule[h, -1.5], Rule[k, 1], Rule[n, 2]} -0.08488263631567752 <- {Rule[h, -1.5], Rule[k, 1], Rule[n, 3]} |
26.8.E20 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Stirlingnumbers@{n+1}{k+1} = n!\sum_{j=k}^{n}\frac{(-1)^{n-j}}{j!}\,\Stirlingnumbers@{j}{k}} | Stirling1(n + 1, k + 1) = factorial(n)*sum(((- 1)^(n - j))/(factorial(j))*Stirling1(j, k), j = k..n) |
StirlingS1[n + 1, k + 1] == (n)!*Sum[Divide[(- 1)^(n - j),(j)!]*StirlingS1[j, k], {j, k, n}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E21 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Stirlingnumbers@{n+k+1}{k} = -\sum_{j=0}^{k}(n+j)\Stirlingnumbers@{n+j}{j}} | Stirling1(n + k + 1, k) = - sum((n + j)* Stirling1(n + j, j), j = 0..k) |
StirlingS1[n + k + 1, k] == - Sum[(n + j)* StirlingS1[n + j, j], {j, 0, k}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E22 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{k} = k\StirlingnumberS@{n-1}{k}+\StirlingnumberS@{n-1}{k-1}} | Stirling2(n, k) = k*Stirling2(n - 1, k)+ Stirling2(n - 1, k - 1) |
StirlingS2[n, k] == k*StirlingS2[n - 1, k]+ StirlingS2[n - 1, k - 1] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E23 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{k}{h}\StirlingnumberS@{n}{k} = \sum_{j=k-h}^{n-h}\binom{n}{j}\StirlingnumberS@{n-j}{h}\StirlingnumberS@{j}{k-h}} | binomial(k,h)*Stirling2(n, k) = sum(binomial(n,j)*Stirling2(n - j, h)*Stirling2(j, k - h), j = k - h..n - h) |
Binomial[k,h]*StirlingS2[n, k] == Sum[Binomial[n,j]*StirlingS2[n - j, h]*StirlingS2[j, k - h], {j, k - h, n - h}, GenerateConditions->None] |
Error | Failure | - | Failed [22 / 30]
{Plus[-0.08488263631567752, Times[0.08488263631567751, StirlingS2[-1.5, -1.5], StirlingS2[2.5, 2.5]]] <- {Rule[h, -1.5], Rule[k, 1], Rule[n, 1]} Plus[-0.08488263631567752, Times[-0.33953054526271004, StirlingS2[-0.5, -1.5], StirlingS2[2.5, 2.5]], Times[0.04850436360895858, StirlingS2[-1.5, -1.5], StirlingS2[3.5, 2.5]]] <- {Rule[h, -1.5], Rule[k, 1], Rule[n, 2]} |
26.8.E24 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{k} = \sum_{j=k}^{n}\StirlingnumberS@{j-1}{k-1}k^{n-j}} | Stirling2(n, k) = sum(Stirling2(j - 1, k - 1)*(k)^(n - j), j = k..n) |
StirlingS2[n, k] == Sum[StirlingS2[j - 1, k - 1]*(k)^(n - j), {j, k, n}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E25 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n+1}{k+1} = \sum_{j=k}^{n}\binom{n}{j}\StirlingnumberS@{j}{k}} | Stirling2(n + 1, k + 1) = sum(binomial(n,j)*Stirling2(j, k), j = k..n) |
StirlingS2[n + 1, k + 1] == Sum[Binomial[n,j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E26 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n+k+1}{k} = \sum_{j=0}^{k}j\StirlingnumberS@{n+j}{j}} | Stirling2(n + k + 1, k) = sum(j*Stirling2(n + j, j), j = 0..k) |
StirlingS2[n + k + 1, k] == Sum[j*StirlingS2[n + j, j], {j, 0, k}, GenerateConditions->None] |
Failure | Successful | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E27 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Stirlingnumbers@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\,\binom{n+k}{k-j}\*\StirlingnumberS@{k+j}{j}} | Stirling1(n, n - k) = sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling2(k + j, j), j = 0..k) |
StirlingS1[n, n - k] == Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS2[k + j, j], {j, 0, k}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 9] | Failed [3 / 9]
{StirlingS1[1.0, -1.0] <- {Rule[k, 2], Rule[n, 1]} StirlingS1[1.0, -2.0] <- {Rule[k, 3], Rule[n, 1]} |
26.8.E28 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{n}\Stirlingnumbers@{n}{k} = 0} | sum(Stirling1(n, k), k = 1..n) = 0 |
Sum[StirlingS1[n, k], {k, 1, n}, GenerateConditions->None] == 0 |
Failure | Failure | Successful [Tested: 2] | Successful [Tested: 2] |
26.8.E29 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{n}(-1)^{n-k}\Stirlingnumbers@{n}{k} = n!} | sum((- 1)^(n - k)* Stirling1(n, k), k = 1..n) = factorial(n) |
Sum[(- 1)^(n - k)* StirlingS1[n, k], {k, 1, n}, GenerateConditions->None] == (n)! |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.8.E30 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{j=k}^{n}\Stirlingnumbers@{n+1}{j+1}\,n^{j-k} = \Stirlingnumbers@{n}{k}} | sum(Stirling1(n + 1, j + 1)*(n)^(j - k), j = k..n) = Stirling1(n, k) |
Sum[StirlingS1[n + 1, j + 1]*(n)^(j - k), {j, k, n}, GenerateConditions->None] == StirlingS1[n, k] |
Failure | Successful | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E33 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{n-k} = \sum_{j=0}^{k}(-1)^{j}\binom{n-1+j}{k+j}\binom{n+k}{k-j}\*\Stirlingnumbers@{k+j}{j}} | Stirling2(n, n - k) = sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling1(k + j, j), j = 0..k) |
StirlingS2[n, n - k] == Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS1[k + j, j], {j, 0, k}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 9] | Failed [3 / 9]
{StirlingS2[1.0, -1.0] <- {Rule[k, 2], Rule[n, 1]} StirlingS2[1.0, -2.0] <- {Rule[k, 3], Rule[n, 1]} |
26.8.E34 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{j=0}^{n}j^{k}x^{j} = \sum_{j=0}^{k}\StirlingnumberS@{k}{j}x^{j}\deriv[j]{}{x}\left(\frac{1-x^{n+1}}{1-x}\right)} | sum((j)^(k)* (x)^(j), j = 0..n) = sum(Stirling2(k, j)*(x)^(j)* diff((1 - (x)^(n + 1))/(1 - x), [x$(j)]), j = 0..k) |
Sum[(j)^(k)* (x)^(j), {j, 0, n}, GenerateConditions->None] == Sum[StirlingS2[k, j]*(x)^(j)* D[Divide[1 - (x)^(n + 1),1 - x], {x, j}], {j, 0, k}, GenerateConditions->None] |
Aborted | Failure | Skipped - Because timed out | Skipped - Because timed out |
26.8.E35 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{j=0}^{n}j^{k} = \sum_{j=0}^{k}j!\StirlingnumberS@{k}{j}\binom{n+1}{j+1}} | sum((j)^(k), j = 0..n) = sum(factorial(j)*Stirling2(k, j)*binomial(n + 1,j + 1), j = 0..k) |
Sum[(j)^(k), {j, 0, n}, GenerateConditions->None] == Sum[(j)!*StirlingS2[k, j]*Binomial[n + 1,j + 1], {j, 0, k}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E36 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}(-1)^{n-k}k!\StirlingnumberS@{n}{k} = 1} | sum((- 1)^(n - k)* factorial(k)*Stirling2(n, k), k = 0..n) = 1 |
Sum[(- 1)^(n - k)* (k)!*StirlingS2[n, k], {k, 0, n}, GenerateConditions->None] == 1 |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
26.8.E38 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A^{-1} = B} | (A)^(- 1) = B |
(A)^(- 1) == B |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.8.E39 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{j=k}^{n}\Stirlingnumbers@{j}{k}\StirlingnumberS@{n}{j} = \sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k}} | sum(Stirling1(j, k)*Stirling2(n, j), j = k..n) = sum(Stirling1(n, j)*Stirling2(j, k), j = k..n) |
Sum[StirlingS1[j, k]*StirlingS2[n, j], {j, k, n}, GenerateConditions->None] == Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.8.E39 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{j=k}^{n}\Stirlingnumbers@{n}{j}\StirlingnumberS@{j}{k} = \Kroneckerdelta{n}{k}} | sum(Stirling1(n, j)*Stirling2(j, k), j = k..n) = KroneckerDelta[n, k] |
Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}, GenerateConditions->None] == KroneckerDelta[n, k] |
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] |
26.9.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \qbinom{m}{n}{q} = \prod_{j=1}^{n}\frac{1-q^{m-n+j}}{1-q^{j}}} | QBinomial(m, n, q) = product((1 - (q)^(m - n + j))/(1 - (q)^(j)), j = 1..n) |
QBinomial[m,n,q] == Product[Divide[1 - (q)^(m - n + j),1 - (q)^(j)], {j, 1, n}, GenerateConditions->None] |
Failure | Failure | Error | Failed [32 / 90]
{DirectedInfinity[] <- {Rule[m, 1], Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} DirectedInfinity[] <- {Rule[m, 2], Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
26.9.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \prod_{j=1}^{k}\frac{1}{1-q^{j}} = 1+\sum_{m=1}^{\infty}\qbinom{k+m-1}{m}{q}q^{m}} | product((1)/(1 - (q)^(j)), j = 1..k) = 1 + sum(QBinomial(k + m - 1, m, q)*(q)^(m), m = 1..infinity) |
Product[Divide[1,1 - (q)^(j)], {j, 1, k}, GenerateConditions->None] == 1 + Sum[QBinomial[k + m - 1,m,q]*(q)^(m), {m, 1, Infinity}, GenerateConditions->None] |
Failure | Aborted | Error | Skipped - Because timed out |
26.9.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1+\sum_{k=1}^{\infty}\qbinom{m+k}{k}{q}x^{k} = \prod_{j=0}^{m}\frac{1}{1-x\,q^{j}}} | 1 + sum(QBinomial(m + k, k, q)*(x)^(k), k = 1..infinity) = product((1)/(1 - x*(q)^(j)), j = 0..m) |
1 + Sum[QBinomial[m + k,k,q]*(x)^(k), {k, 1, Infinity}, GenerateConditions->None] == Product[Divide[1,1 - x*(q)^(j)], {j, 0, m}, GenerateConditions->None] |
Failure | Aborted | Error | Skipped - Because timed out |
26.10.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}} | product(1 + (q)^(j), j = 1..infinity) = product((1)/(1 - (q)^(2*j - 1)), j = 1..infinity) |
Product[1 + (q)^(j), {j, 1, Infinity}, GenerateConditions->None] == Product[Divide[1,1 - (q)^(2*j - 1)], {j, 1, Infinity}, GenerateConditions->None] |
Failure | Failure | Error | Failed [1 / 10]
{DirectedInfinity[] <- {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} |
26.10.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})} | sum(QBinomial(k, m, q)*(q)^(m*(m + 1)/ 2)* (x)^(m), m = 0..k) = product(1 + x*(q)^(j), j = 1..k) |
Sum[QBinomial[k,m,q]*(q)^(m*(m + 1)/ 2)* (x)^(m), {m, 0, k}, GenerateConditions->None] == Product[1 + x*(q)^(j), {j, 1, k}, GenerateConditions->None] |
Failure | Failure | Error | Successful [Tested: 30] |
26.11.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ncompositions[m]@{0} = \Kroneckerdelta{0}{m}} | numbcomp(0, m) = KroneckerDelta[0, m] |
Error |
Error | Missing Macro Error | - | - |
26.11.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ncompositions[m]@{n} = \binom{n-1}{m-1}} | numbcomp(n, m) = binomial(n - 1,m - 1) |
Error |
Error | Missing Macro Error | - | - |
26.11.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\ncompositions[m]@{n}q^{n} = \frac{q^{m}}{(1-q)^{m}}} | sum(numbcomp(n, m)*(q)^(n), n = 0..infinity) = ((q)^(m))/((1 - q)^(m)) |
Error |
Error | Missing Macro Error | - | - |
26.11#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{0} = 0} | F[0] = 0 |
Subscript[F, 0] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.11#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{1} = 1} | F[1] = 1 |
Subscript[F, 1] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.11#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{n} = F_{n-1}+F_{n-2}} | F[n] = F[n - 1]+ F[n - 2] |
Subscript[F, n] == Subscript[F, n - 1]+ Subscript[F, n - 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.11.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{n} = \frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n}\,\sqrt{5}}} | F[n] = ((1 +sqrt(5))^(n)-(1 -sqrt(5))^(n))/((2)^(n)*sqrt(5)) |
Subscript[F, n] == Divide[(1 +Sqrt[5])^(n)-(1 -Sqrt[5])^(n),(2)^(n)*Sqrt[5]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.12.E23 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \prod_{h=1}^{r}\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{1\leq h<j\leq r}\frac{1-q^{3(h+2j-1)}}{1-q^{3(h+j-1)}} = \prod_{h=1}^{r}\left(\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{j=h}^{r}\frac{1-q^{3(r+h+j-1)}}{1-q^{3(2h+j-1)}}\right)} | product((1 - (q)^(3*h - 1))/(1 - (q)^(3*h - 2)), h = 1..r)*product(product((1 - (q)^(3*(h + 2*j - 1)))/(1 - (q)^(3*(h + j - 1))), j = h + 1..r), h = 1..j - 1) = product((1 - (q)^(3*h - 1))/(1 - (q)^(3*h - 2))*product((1 - (q)^(3*(r + h + j - 1)))/(1 - (q)^(3*(2*h + j - 1))), j = h..r), h = 1..r) |
Product[Divide[1 - (q)^(3*h - 1),1 - (q)^(3*h - 2)], {h, 1, r}, GenerateConditions->None]*Product[Product[Divide[1 - (q)^(3*(h + 2*j - 1)),1 - (q)^(3*(h + j - 1))], {j, h + 1, r}, GenerateConditions->None], {h, 1, j - 1}, GenerateConditions->None] == Product[Divide[1 - (q)^(3*h - 1),1 - (q)^(3*h - 2)]*Product[Divide[1 - (q)^(3*(r + h + j - 1)),1 - (q)^(3*(2*h + j - 1))], {j, h, r}, GenerateConditions->None], {h, 1, r}, GenerateConditions->None] |
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out |
26.12#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{3} = 1.20205\;69032} | Zeta(3) = 1.2020569032 |
Zeta[3] == 1.2020569032 |
Successful | Failure | - | Successful [Tested: 1] |
26.12#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta'@{-1} = -0.16542\;11437} | subs( temp=- 1, diff( Zeta(temp), temp$(1) ) ) = - 0.1654211437 |
(D[Zeta[temp], {temp, 1}]/.temp-> - 1) == - 0.1654211437 |
Successful | Failure | - | Successful [Tested: 1] |
26.13.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle d(n) = n!\sum_{j=0}^{n}(-1)^{j}\frac{1}{j!}} | d*(n) = factorial(n)*sum((- 1)^(j)*(1)/(factorial(j)), j = 0..n) |
d*(n) == (n)!*Sum[(- 1)^(j)*Divide[1,(j)!], {j, 0, n}, GenerateConditions->None] |
Failure | Failure | Failed [29 / 30] 29/30]: [[.8660254040+.5000000000*I <- {d = 1/2*3^(1/2)+1/2*I, n = 1} .7320508081+1.*I <- {d = 1/2*3^(1/2)+1/2*I, n = 2} |
Failed [29 / 30]
{Complex[0.8660254037844387, 0.49999999999999994] <- {Rule[d, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 1]} Complex[0.7320508075688774, 0.9999999999999999] <- {Rule[d, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 2]} |
26.13.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n!\sum_{j=0}^{n}(-1)^{j}\frac{1}{j!} = \floor{\frac{n!+\expe-2}{\expe}}} | factorial(n)*sum((- 1)^(j)*(1)/(factorial(j)), j = 0..n) = floor((factorial(n)+ exp(1)- 2)/(exp(1))) |
(n)!*Sum[(- 1)^(j)*Divide[1,(j)!], {j, 0, n}, GenerateConditions->None] == Floor[Divide[(n)!+ E - 2,E]] |
Failure | Failure | Failed [1 / 3] 1/3]: [[.9999999999 <- {n = 2} |
Successful [Tested: 3] |
26.14.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n,k=0}^{\infty}\Euleriannumber{n}{k}x^{k}\,\frac{t^{n}}{n!} = \frac{1-x}{\exp((x-1)t)-x}} | Error |
Sum[Sum[Sum[(-1)^m Binomial[n+1,m] (k-m+1)^(n),{m,0,k+1}]*(x)^(k)*Divide[(t)^(n),(n)!], {k, 0, Infinity}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] == Divide[1 - x,Exp[(x - 1)*t]- x] |
Missing Macro Error | Translation Error | - | - |
26.14.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n-1}\Euleriannumber{n}{k}\binom{x+k}{n} = x^{n}} | Error |
Sum[Sum[(-1)^m Binomial[n+1,m] (k-m+1)^(n),{m,0,k+1}]*Binomial[x + k,n], {k, 0, n - 1}, GenerateConditions->None] == (x)^(n) |
Missing Macro Error | Failure | - | Successful [Tested: 9] |
26.14.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Euleriannumber{n}{k} = \sum_{j=0}^{k}(-1)^{j}\binom{n+1}{j}(k+1-j)^{n}} | Error |
Sum[(-1)^m Binomial[n+1,m] (k-m+1)^(n),{m,0,k+1}] == Sum[(- 1)^(j)*Binomial[n + 1,j]*(k + 1 - j)^(n), {j, 0, k}, GenerateConditions->None] |
Missing Macro Error | Failure | - | Successful [Tested: 9] |
26.14.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Euleriannumber{n}{k} = \sum_{j=0}^{n-k}(-1)^{n-k-j}j!\binom{n-j}{k}\StirlingnumberS@{n}{j}} | Error |
Sum[(-1)^m Binomial[n+1,m] (k-m+1)^(n),{m,0,k+1}] == Sum[(- 1)^(n - k - j)* (j)!*Binomial[n - j,k]*StirlingS2[n, j], {j, 0, n - k}, GenerateConditions->None] |
Missing Macro Error | Failure | - | Successful [Tested: 9] |
26.14.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Euleriannumber{n}{k} = (k+1)\Euleriannumber{n-1}{k}+(n-k)\Euleriannumber{n-1}{k-1}} | Error |
Sum[(-1)^m Binomial[n+1,m] (k-m+1)^(n),{m,0,k+1}] == (k + 1)* Sum[(-1)^m Binomial[n - 1+1,m] (k-m+1)^(n - 1),{m,0,k+1}]+(n - k)* Sum[(-1)^m Binomial[n - 1+1,m] (k - 1-m+1)^(n - 1),{m,0,k - 1+1}] |
Missing Macro Error | Failure | - | Successful [Tested: 6] |
26.14.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Euleriannumber{n}{k} = \Euleriannumber{n}{n-1-k}} | Error |
Sum[(-1)^m Binomial[n+1,m] (k-m+1)^(n),{m,0,k+1}] == Sum[(-1)^m Binomial[n+1,m] (n - 1 - k-m+1)^(n),{m,0,n - 1 - k+1}] |
Missing Macro Error | Failure | - | Successful [Tested: 9] |
26.14.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n-1}\Euleriannumber{n}{k} = n!} | Error |
Sum[Sum[(-1)^m Binomial[n+1,m] (k-m+1)^(n),{m,0,k+1}], {k, 0, n - 1}, GenerateConditions->None] == (n)! |
Missing Macro Error | Failure | - | Successful [Tested: 3] |
26.14.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{m} = \frac{m}{2^{m}(2^{m}-1)}\sum_{k=0}^{m-2}(-1)^{k}\Euleriannumber{m-1}{k}} | Error |
BernoulliB[m] == Divide[m,(2)^(m)*((2)^(m)- 1)]*Sum[(- 1)^(k)* Sum[(-1)^m Binomial[m - 1+1,m] (k-m+1)^(m - 1),{m,0,k+1}], {k, 0, m - 2}, GenerateConditions->None] |
Missing Macro Error | Failure | - | Failed [1 / 2]
{Plus[0.16666666666666666, Times[-0.16666666666666666, NSum[Times[Power[-1, 2], Power[Plus[1, k, Times[-1, 2]], Plus[-1, 2]]] <- {2, 0, Plus[1, k]}]]], {Rule[m, 2]} |
26.14.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StirlingnumberS@{n}{m} = \frac{1}{m!}\sum_{k=0}^{n-1}\Euleriannumber{n}{k}\binom{k}{n-m}} | Error |
StirlingS2[n, m] == Divide[1,(m)!]*Sum[Sum[(-1)^m Binomial[n+1,m] (k-m+1)^(n),{m,0,k+1}]*Binomial[k,n - m], {k, 0, n - 1}, GenerateConditions->None] |
Missing Macro Error | Failure | - | Failed [6 / 6]
{Plus[1.0, Times[-1.0, NSum[Times[Power[-1, 1], Power[Plus[1, k, Times[-1, 1]], 1], Binomial[Plus[1, 1], 1]] <- {1, 0, Plus[1, k]}]]], {Rule[m, 1], Rule[n, 1]} Plus[1.0, Times[-1.0, NSum[Times[Power[-1, 1], Power[Plus[1, k, Times[-1, 1]], 2], Binomial[Plus[1, 2], 1]] <- {1, 0, Plus[1, k]}]]], {Rule[m, 1], Rule[n, 2]} |
26.14.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Euleriannumber{0}{k} = \Kroneckerdelta{0}{k}} | Error |
Sum[(-1)^m Binomial[0+1,m] (k-m+1)^(0),{m,0,k+1}] == KroneckerDelta[0, k] |
Missing Macro Error | Failure | - | Successful [Tested: 3] |
26.14.E14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Euleriannumber{n}{0} = 1} | Error |
Sum[(-1)^m Binomial[n+1,m] (0-m+1)^(n),{m,0,0+1}] == 1 |
Missing Macro Error | Failure | - | Successful [Tested: 3] |
26.14.E15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Euleriannumber{n}{1} = 2^{n}-n-1} | Error |
Sum[(-1)^m Binomial[n+1,m] (1-m+1)^(n),{m,0,1+1}] == (2)^(n)- n - 1 |
Missing Macro Error | Successful | - | Successful [Tested: 3] |
26.14.E16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Euleriannumber{n}{2} = 3^{n}-(n+1)2^{n}+\binom{n+1}{2}} | Error |
Sum[(-1)^m Binomial[n+1,m] (2-m+1)^(n),{m,0,2+1}] == (3)^(n)-(n + 1)* (2)^(n)+Binomial[n + 1,2] |
Missing Macro Error | Successful | - | Successful [Tested: 3] |
26.15.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle R(x,B) = \sum_{j=0}^{n}r_{j}(B)\,x^{j}} | R*(x , B) = sum(r[j]*(B)* (x)^(j), j = 0..n) |
R*(x , B) == Sum[Subscript[r, j]*(B)* (x)^(j), {j, 0, n}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.15.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle R(x,B) = R(x,B_{1})\,R(x,B_{2})} | R*(x , B) = R*(x , B[1])* R*(x , B[2]) |
R*(x , B) == R*(x , Subscript[B, 1])* R*(x , Subscript[B, 2]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.15.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle N(x,B) = \sum_{k=0}^{n}N_{k}(B)\,x^{k}} | N*(x , B) = sum(N[k]*(B)* (x)^(k), k = 0..n) |
N*(x , B) == Sum[Subscript[N, k]*(B)* (x)^(k), {k, 0, n}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.15.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle N(x,B) = \sum_{k=0}^{n}r_{k}(B)(n-k)!(x-1)^{k}} | N*(x , B) = sum(r[k]*(B)*factorial(n - k)*(x - 1)^(k), k = 0..n) |
N*(x , B) == Sum[Subscript[r, k]*(B)*(n - k)!*(x - 1)^(k), {k, 0, n}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.15.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle N_{0}(B)\defeq N(0,B) = \sum_{k=0}^{n}(-1)^{k}r_{k}(B)(n-k)!} | N[0]*(B) = N*(0 , B) = sum((- 1)^(k)* r[k]*(B)*factorial(n - k), k = 0..n) |
Subscript[N, 0]*(B) == N*(0 , B) == Sum[(- 1)^(k)* Subscript[r, k]*(B)*(n - k)!, {k, 0, n}, GenerateConditions->None] |
Failure | Failure | Error | Error |
26.15.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r_{k}(B) = \frac{2n}{2n-k}\binom{2n-k}{k}} | r[k]*(B) = (2*n)/(2*n - k)*binomial(2*n - k,k) |
Subscript[r, k]*(B) == Divide[2*n,2*n - k]*Binomial[2*n - k,k] |
Failure | Failure | Failed [300 / 300] 300/300]: [[-1.500000000+.8660254040*I <- {B = 1/2*3^(1/2)+1/2*I, r[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1} -3.500000000+.8660254040*I <- {B = 1/2*3^(1/2)+1/2*I, r[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2} |
Failed [300 / 300]
{Complex[-1.5, 0.8660254037844386] <- {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 1], Rule[Subscript[r, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-3.5, 0.8660254037844386] <- {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 2], Rule[Subscript[r, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |
26.15.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2(n!)N_{0}(B) = 2(n!)\sum_{k=0}^{n}(-1)^{k}\frac{2n}{2n-k}\binom{2n-k}{k}{(n-k)!}} | 2*(factorial(n))* N[0]*(B) = 2*(factorial(n))* sum((- 1)^(k)*(2*n)/(2*n - k)*binomial(2*n - k,k)*factorial(n - k), k = 0..n) |
2*((n)!)* Subscript[N, 0]*(B) == 2*((n)!)* Sum[(- 1)^(k)*Divide[2*n,2*n - k]*Binomial[2*n - k,k]*(n - k)!, {k, 0, n}, GenerateConditions->None] |
Failure | Failure | Failed [292 / 300] 292/300]: [[3.000000001+1.732050808*I <- {B = 1/2*3^(1/2)+1/2*I, N[0] = 1/2*3^(1/2)+1/2*I, n = 1} 2.000000002+3.464101616*I <- {B = 1/2*3^(1/2)+1/2*I, N[0] = 1/2*3^(1/2)+1/2*I, n = 2} |
Skipped - Because timed out |
26.15.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = \prod_{j=1}^{n}(x+b_{j}-j+1)} | sum(r[n - k]*(B)*x - k + 1[k], k = 0..n) = product(x + b[j]- j + 1, j = 1..n) |
Sum[Subscript[r, n - k]*(B)*Subscript[x - k + 1, k], {k, 0, n}, GenerateConditions->None] == Product[x + Subscript[b, j]- j + 1, {j, 1, n}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.15.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}r_{n-k}(B)(x-k+1)_{k} = x^{n}} | sum(r[n - k]*(B)*x - k + 1[k], k = 0..n) = (x)^(n) |
Sum[Subscript[r, n - k]*(B)*Subscript[x - k + 1, k], {k, 0, n}, GenerateConditions->None] == (x)^(n) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
26.15.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r_{n-k}(B) = \StirlingnumberS@{n}{k}} | r[n - k]*(B) = Stirling2(n, k) |
Subscript[r, n - k]*(B) == StirlingS2[n, k] |
Failure | Failure | Failed [300 / 300] 300/300]: [[-.4999999996+.8660254040*I <- {B = 1/2*3^(1/2)+1/2*I, r[n-k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1} -.4999999996+.8660254040*I <- {B = 1/2*3^(1/2)+1/2*I, r[n-k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2} |
Failed [300 / 300]
{Complex[-0.4999999999999999, 0.8660254037844386] <- {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 1], Rule[Subscript[r, Plus[Times[-1, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Complex[-0.4999999999999999, 0.8660254037844386] <- {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[n, 2], Rule[Subscript[r, Plus[Times[-1, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} |