Orthogonal Polynomials - 18.6 Symmetry, Special Values, and Limits to Monomials

From testwiki
Revision as of 17:22, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.6.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \LaguerrepolyL[\alpha]{n}@{0} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}}
\LaguerrepolyL[\alpha]{n}@{0} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
LaguerreL(n, alpha, 0) = (pochhammer(alpha + 1, n))/(factorial(n))
LaguerreL[n, \[Alpha], 0] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]
Missing Macro Error Successful - Successful [Tested: 9]
18.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{\alpha\to\infty}\frac{\JacobipolyP{\alpha}{\beta}{n}@{x}}{\JacobipolyP{\alpha}{\beta}{n}@{1}} = \left(\frac{1+x}{2}\right)^{n}}
\lim_{\alpha\to\infty}\frac{\JacobipolyP{\alpha}{\beta}{n}@{x}}{\JacobipolyP{\alpha}{\beta}{n}@{1}} = \left(\frac{1+x}{2}\right)^{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((JacobiP(n, alpha, beta, x))/(JacobiP(n, alpha, beta, 1)), alpha = infinity) = ((1 + x)/(2))^(n)
Limit[Divide[JacobiP[n, \[Alpha], \[Beta], x],JacobiP[n, \[Alpha], \[Beta], 1]], \[Alpha] -> Infinity, GenerateConditions->None] == (Divide[1 + x,2])^(n)
Failure Aborted Successful [Tested: 27] Skipped - Because timed out
18.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{\beta\to\infty}\frac{\JacobipolyP{\alpha}{\beta}{n}@{x}}{\JacobipolyP{\alpha}{\beta}{n}@{-1}} = \left(\frac{1-x}{2}\right)^{n}}
\lim_{\beta\to\infty}\frac{\JacobipolyP{\alpha}{\beta}{n}@{x}}{\JacobipolyP{\alpha}{\beta}{n}@{-1}} = \left(\frac{1-x}{2}\right)^{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((JacobiP(n, alpha, beta, x))/(JacobiP(n, alpha, beta, - 1)), beta = infinity) = ((1 - x)/(2))^(n)
Limit[Divide[JacobiP[n, \[Alpha], \[Beta], x],JacobiP[n, \[Alpha], \[Beta], - 1]], \[Beta] -> Infinity, GenerateConditions->None] == (Divide[1 - x,2])^(n)
Failure Failure Error Successful [Tested: 27]
18.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{\lambda\to\infty}\frac{\ultrasphpoly{\lambda}{n}@{x}}{\ultrasphpoly{\lambda}{n}@{1}} = x^{n}}
\lim_{\lambda\to\infty}\frac{\ultrasphpoly{\lambda}{n}@{x}}{\ultrasphpoly{\lambda}{n}@{1}} = x^{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((GegenbauerC(n, lambda, x))/(GegenbauerC(n, lambda, 1)), lambda = infinity) = (x)^(n)
Limit[Divide[GegenbauerC[n, \[Lambda], x],GegenbauerC[n, \[Lambda], 1]], \[Lambda] -> Infinity, GenerateConditions->None] == (x)^(n)
Failure Aborted Successful [Tested: 9] Skipped - Because timed out
18.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{\alpha\to\infty}\frac{\LaguerrepolyL[\alpha]{n}@{\alpha x}}{\LaguerrepolyL[\alpha]{n}@{0}} = (1-x)^{n}}
\lim_{\alpha\to\infty}\frac{\LaguerrepolyL[\alpha]{n}@{\alpha x}}{\LaguerrepolyL[\alpha]{n}@{0}} = (1-x)^{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((LaguerreL(n, alpha, alpha*x))/(LaguerreL(n, alpha, 0)), alpha = infinity) = (1 - x)^(n)
Limit[Divide[LaguerreL[n, \[Alpha], \[Alpha]*x],LaguerreL[n, \[Alpha], 0]], \[Alpha] -> Infinity, GenerateConditions->None] == (1 - x)^(n)
Missing Macro Error Aborted - Skipped - Because timed out