Combinatorial Analysis - 26.13 Permutations: Cycle Notation

From testwiki
Revision as of 17:48, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.13.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle d(n) = n!\sum_{j=0}^{n}(-1)^{j}\frac{1}{j!}}
d(n) = n!\sum_{j=0}^{n}(-1)^{j}\frac{1}{j!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
d(n) = factorial(n)*sum((- 1)^(j)*(1)/(factorial(j)), j = 0..n)
d[n] == (n)!*Sum[(- 1)^(j)*Divide[1,(j)!], {j, 0, n}, GenerateConditions->None]
Failure Failure
Failed [29 / 30]
Result: .8660254040+.5000000000*I
Test Values: {d = 1/2*3^(1/2)+1/2*I, n = 1}

Result: .7320508081+1.*I
Test Values: {d = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [29 / 30]
Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[d, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 1]}

Result: Complex[0.7320508075688774, 0.9999999999999999]
Test Values: {Rule[d, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[n, 2]}

... skip entries to safe data
26.13.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n!\sum_{j=0}^{n}(-1)^{j}\frac{1}{j!} = \floor{\frac{n!+\expe-2}{\expe}}}
n!\sum_{j=0}^{n}(-1)^{j}\frac{1}{j!} = \floor{\frac{n!+\expe-2}{\expe}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
factorial(n)*sum((- 1)^(j)*(1)/(factorial(j)), j = 0..n) = floor((factorial(n)+ exp(1)- 2)/(exp(1)))
(n)!*Sum[(- 1)^(j)*Divide[1,(j)!], {j, 0, n}, GenerateConditions->None] == Floor[Divide[(n)!+ E - 2,E]]
Failure Failure
Failed [1 / 3]
Result: .9999999999
Test Values: {n = 2}

Successful [Tested: 3]