Painlevé Transcendents - 33.2 Definitions and Basic Properties

From testwiki
Revision as of 17:58, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
33.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{\rho}+\left(1-\frac{2\eta}{\rho}-\frac{\ell(\ell+1)}{\rho^{2}}\right)w = 0}
\deriv[2]{w}{\rho}+\left(1-\frac{2\eta}{\rho}-\frac{\ell(\ell+1)}{\rho^{2}}\right)w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff(w, [rho$(2)])+(1 -(2*eta)/(rho)-(ell*(ell + 1))/((rho)^(2)))*w = 0
D[w, {\[Rho], 2}]+(1 -Divide[2*\[Eta],\[Rho]]-Divide[\[ScriptL]*(\[ScriptL]+ 1),\[Rho]^(2)])*w == 0
Failure Failure
Failed [300 / 300]
Result: -11.25833025+5.499999998*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, rho = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, ell = 3}

Result: -5.499999998-11.25833025*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, rho = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2), ell = 3}

... skip entries to safe data
Failed [294 / 300]
Result: Complex[-11.258330249197703, 5.5]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[, 3], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[10.2583302491977, -3.767949192431125]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[, 3], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data