DLMF:13.20.E13 (Q4602)

From testwiki
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:13.20.E13
No description defined

    Statements

    ζ ζ 2 - α 2 - α 2 arccosh ( ζ α ) = X μ - 2 κ μ ln ( X + x - 2 κ 2 κ 2 - μ 2 ) - 2 ln ( κ x - μ X - 2 μ 2 x κ 2 - μ 2 ) , 𝜁 superscript 𝜁 2 superscript 𝛼 2 superscript 𝛼 2 hyperbolic-inverse-cosine 𝜁 𝛼 𝑋 𝜇 2 𝜅 𝜇 𝑋 𝑥 2 𝜅 2 superscript 𝜅 2 superscript 𝜇 2 2 𝜅 𝑥 𝜇 𝑋 2 superscript 𝜇 2 𝑥 superscript 𝜅 2 superscript 𝜇 2 {\displaystyle{\displaystyle\zeta\sqrt{\zeta^{2}-\alpha^{2}}-\alpha^{2}% \operatorname{arccosh}\left(\frac{\zeta}{\alpha}\right)=\frac{X}{\mu}-\frac{2% \kappa}{\mu}\ln\left(\frac{X+x-2\kappa}{2\sqrt{\kappa^{2}-\mu^{2}}}\right)-2% \ln\left(\frac{\kappa x-\mu X-2\mu^{2}}{x\sqrt{\kappa^{2}-\mu^{2}}}\right),}}
    0 references
    0 references
    x 2 κ + 2 κ 2 - μ 2 𝑥 2 𝜅 2 superscript 𝜅 2 superscript 𝜇 2 {\displaystyle{\displaystyle x\geq 2\kappa+2\sqrt{\kappa^{2}-\mu^{2}}}}
    0 references
    arccosh z hyperbolic-inverse-cosine 𝑧 {\displaystyle{\displaystyle\operatorname{arccosh}\NVar{z}}}
    C4.S37.SS2.p1.m9adec
    0 references
    ln z 𝑧 {\displaystyle{\displaystyle\ln\NVar{z}}}
    C4.S2.E2.m2addec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C13.S1.XMD4.m1jdec
    0 references
    α 𝛼 {\displaystyle{\displaystyle\alpha}}
    C13.S20.XMD2.m1bdec
    0 references