27.14: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E2 27.14.E2] | | | [https://dlmf.nist.gov/27.14.E2 27.14.E2] || <math qid="Q8101">\EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m})</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>product(1-(x)^k, k = 1 .. infinity) = product(1 - (x)^(m), m = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QPochhammer[x,x] == Product[1 - (x)^(m), {m, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 1] || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E3 27.14.E3] | | | [https://dlmf.nist.gov/27.14.E3 27.14.E3] || <math qid="Q8102">\frac{1}{\EulerPhi@{x}} = \sum_{n=0}^{\infty}\npartitions[]@{n}x^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerPhi@{x}} = \sum_{n=0}^{\infty}\npartitions[]@{n}x^{n}</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>(1)/(product(1-(x)^k, k = 1 .. infinity)) = sum(nops(partition(n))*(x)^(n), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Error || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E6 27.14.E6] | | | [https://dlmf.nist.gov/27.14.E6 27.14.E6] || <math qid="Q8105">\npartitions[]@{n} = \sum_{k=1}^{\infty}(-1)^{k+1}\left(\npartitions[]@{n-\omega(k)}+\npartitions[]@{n-\omega(-k)}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\npartitions[]@{n} = \sum_{k=1}^{\infty}(-1)^{k+1}\left(\npartitions[]@{n-\omega(k)}+\npartitions[]@{n-\omega(-k)}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>nops(partition(n)) = sum((- 1)^(k + 1)*(nops(partition(n - omega(k)))+ nops(partition(n - omega(- k)))), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Error || Missing Macro Error || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E7 27.14.E7] | | | [https://dlmf.nist.gov/27.14.E7 27.14.E7] || <math qid="Q8106">n\npartitions[]@{n} = \sum_{k=1}^{n}\sumdivisors{1}@{k}\npartitions[]@{n-k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>n\npartitions[]@{n} = \sum_{k=1}^{n}\sumdivisors{1}@{k}\npartitions[]@{n-k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>n*nops(partition(n)) = sum(add(divisors(1))*nops(partition(n - k)), k = 1..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Error || Missing Macro Error || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E9 27.14.E9] | | | [https://dlmf.nist.gov/27.14.E9 27.14.E9] || <math qid="Q8108">\npartitions[]@{n} = \frac{1}{\cpi\sqrt{2}}\sum_{k=1}^{\infty}\sqrt{k}A_{k}(n)\*\left[\deriv{}{t}\frac{\sinh@{\ifrac{K\sqrt{t}}{k}}}{\sqrt{t}}\right]_{t=n-(1/24)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\npartitions[]@{n} = \frac{1}{\cpi\sqrt{2}}\sum_{k=1}^{\infty}\sqrt{k}A_{k}(n)\*\left[\deriv{}{t}\frac{\sinh@{\ifrac{K\sqrt{t}}{k}}}{\sqrt{t}}\right]_{t=n-(1/24)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>nops(partition(n)) = (1)/(Pi*sqrt(2))*sum(sqrt(k)*A[k](n)*diff((sinh((K*sqrt(t))/(k)))/(sqrt(t)), t)[t = n -(1/24)], k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Error || Missing Macro Error || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E12 27.14.E12] | | | [https://dlmf.nist.gov/27.14.E12 27.14.E12] || <math qid="Q8111">\Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\prod_{n=1}^{\infty}(1-e^{2\cpi\iunit n\tau})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\prod_{n=1}^{\infty}(1-e^{2\cpi\iunit n\tau})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*Product[1 - Exp[2*Pi*I*n*\[Tau]], {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E13 27.14.E13] | | | [https://dlmf.nist.gov/27.14.E13 27.14.E13] || <math qid="Q8112">\Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\EulerPhi@{e^{2\cpi\iunit\tau}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\EulerPhi@{e^{2\cpi\iunit\tau}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*QPochhammer[Exp[2*Pi*I*\[Tau]],Exp[2*Pi*I*\[Tau]]]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E14 27.14.E14] | | | [https://dlmf.nist.gov/27.14.E14 27.14.E14] || <math qid="Q8113">\Dedekindeta@{\frac{a\tau+b}{c\tau+d}} = \varepsilon(-\iunit(c\tau+d))^{\frac{1}{2}}\Dedekindeta@{\tau}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\frac{a\tau+b}{c\tau+d}} = \varepsilon(-\iunit(c\tau+d))^{\frac{1}{2}}\Dedekindeta@{\tau}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[Divide[a*\[Tau]+ b,c*\[Tau]+ d]] == \[CurlyEpsilon]*(- I*(c*\[Tau]+ d))^(Divide[1,2])* DedekindEta[\[Tau]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [135 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.13319594449577687, -0.32363546143707655] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 1], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.41002146111087723, -1.4100702726503846] | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 1], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.41002146111087723, -1.4100702726503846] | ||
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 2], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 2], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E15 27.14.E15] | | | [https://dlmf.nist.gov/27.14.E15 27.14.E15] || <math qid="Q8114">5\frac{(\EulerPhi@{x^{5}})^{5}}{(\EulerPhi@{x})^{6}} = \sum_{n=0}^{\infty}\npartitions[]@{5n+4}x^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>5\frac{(\EulerPhi@{x^{5}})^{5}}{(\EulerPhi@{x})^{6}} = \sum_{n=0}^{\infty}\npartitions[]@{5n+4}x^{n}</syntaxhighlight> || <math>|x| < 1, |(x^{5})| < 1</math> || <syntaxhighlight lang=mathematica>5*((product(1-((x)^(5))^k, k = 1 .. infinity))^(5))/((product(1-(x)^k, k = 1 .. infinity))^(6)) = sum(nops(partition(5*n + 4))*(x)^(n), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Error || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/27.14.E18 27.14.E18] | | | [https://dlmf.nist.gov/27.14.E18 27.14.E18] || <math qid="Q8117">x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n}</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>x*Product[(1 - (x)^(n))^(24), {n, 1, Infinity}, GenerateConditions->None] == Sum[RamanujanTau[n]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 12:07, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
27.14.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m})}
\EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m}) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1} | product(1-(x)^k, k = 1 .. infinity) = product(1 - (x)^(m), m = 1..infinity)
|
QPochhammer[x,x] == Product[1 - (x)^(m), {m, 1, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 1] | Successful [Tested: 1] |
27.14.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerPhi@{x}} = \sum_{n=0}^{\infty}\npartitions[]@{n}x^{n}}
\frac{1}{\EulerPhi@{x}} = \sum_{n=0}^{\infty}\npartitions[]@{n}x^{n} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1} | (1)/(product(1-(x)^k, k = 1 .. infinity)) = sum(nops(partition(n))*(x)^(n), n = 0..infinity)
|
Error
|
Failure | Missing Macro Error | Error | - |
27.14.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \npartitions[]@{n} = \sum_{k=1}^{\infty}(-1)^{k+1}\left(\npartitions[]@{n-\omega(k)}+\npartitions[]@{n-\omega(-k)}\right)}
\npartitions[]@{n} = \sum_{k=1}^{\infty}(-1)^{k+1}\left(\npartitions[]@{n-\omega(k)}+\npartitions[]@{n-\omega(-k)}\right) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | nops(partition(n)) = sum((- 1)^(k + 1)*(nops(partition(n - omega(k)))+ nops(partition(n - omega(- k)))), k = 1..infinity)
|
Error
|
Error | Missing Macro Error | - | - |
27.14.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n\npartitions[]@{n} = \sum_{k=1}^{n}\sumdivisors{1}@{k}\npartitions[]@{n-k}}
n\npartitions[]@{n} = \sum_{k=1}^{n}\sumdivisors{1}@{k}\npartitions[]@{n-k} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | n*nops(partition(n)) = sum(add(divisors(1))*nops(partition(n - k)), k = 1..n)
|
Error
|
Error | Missing Macro Error | - | - |
27.14.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \npartitions[]@{n} = \frac{1}{\cpi\sqrt{2}}\sum_{k=1}^{\infty}\sqrt{k}A_{k}(n)\*\left[\deriv{}{t}\frac{\sinh@{\ifrac{K\sqrt{t}}{k}}}{\sqrt{t}}\right]_{t=n-(1/24)}}
\npartitions[]@{n} = \frac{1}{\cpi\sqrt{2}}\sum_{k=1}^{\infty}\sqrt{k}A_{k}(n)\*\left[\deriv{}{t}\frac{\sinh@{\ifrac{K\sqrt{t}}{k}}}{\sqrt{t}}\right]_{t=n-(1/24)} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | nops(partition(n)) = (1)/(Pi*sqrt(2))*sum(sqrt(k)*A[k](n)*diff((sinh((K*sqrt(t))/(k)))/(sqrt(t)), t)[t = n -(1/24)], k = 1..infinity)
|
Error
|
Error | Missing Macro Error | - | - |
27.14.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\prod_{n=1}^{\infty}(1-e^{2\cpi\iunit n\tau})}
\Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\prod_{n=1}^{\infty}(1-e^{2\cpi\iunit n\tau}) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*Product[1 - Exp[2*Pi*I*n*\[Tau]], {n, 1, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Successful [Tested: 1] |
27.14.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\EulerPhi@{e^{2\cpi\iunit\tau}}}
\Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\EulerPhi@{e^{2\cpi\iunit\tau}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*QPochhammer[Exp[2*Pi*I*\[Tau]],Exp[2*Pi*I*\[Tau]]]
|
Missing Macro Error | Failure | - | Successful [Tested: 1] |
27.14.E14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\frac{a\tau+b}{c\tau+d}} = \varepsilon(-\iunit(c\tau+d))^{\frac{1}{2}}\Dedekindeta@{\tau}}
\Dedekindeta@{\frac{a\tau+b}{c\tau+d}} = \varepsilon(-\iunit(c\tau+d))^{\frac{1}{2}}\Dedekindeta@{\tau} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
DedekindEta[Divide[a*\[Tau]+ b,c*\[Tau]+ d]] == \[CurlyEpsilon]*(- I*(c*\[Tau]+ d))^(Divide[1,2])* DedekindEta[\[Tau]]
|
Missing Macro Error | Failure | - | Failed [135 / 300]
Result: Complex[0.13319594449577687, -0.32363546143707655]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 1], Rule[τ, Complex[0, 1]]}
Result: Complex[-0.41002146111087723, -1.4100702726503846]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 2], Rule[τ, Complex[0, 1]]}
... skip entries to safe data |
27.14.E15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 5\frac{(\EulerPhi@{x^{5}})^{5}}{(\EulerPhi@{x})^{6}} = \sum_{n=0}^{\infty}\npartitions[]@{5n+4}x^{n}}
5\frac{(\EulerPhi@{x^{5}})^{5}}{(\EulerPhi@{x})^{6}} = \sum_{n=0}^{\infty}\npartitions[]@{5n+4}x^{n} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1, |(x^{5})| < 1} | 5*((product(1-((x)^(5))^k, k = 1 .. infinity))^(5))/((product(1-(x)^k, k = 1 .. infinity))^(6)) = sum(nops(partition(5*n + 4))*(x)^(n), n = 0..infinity)
|
Error
|
Failure | Missing Macro Error | Error | - |
27.14.E18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n}}
x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1} | Error
|
x*Product[(1 - (x)^(n))^(24), {n, 1, Infinity}, GenerateConditions->None] == Sum[RamanujanTau[n]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Successful | - | Successful [Tested: 1] |