Functions of Number Theory - 27.14 Unrestricted Partitions
		
		
		
		Jump to navigation
		Jump to search
		
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple | Symbolic Mathematica | Numeric Maple | Numeric Mathematica | 
|---|---|---|---|---|---|---|---|---|
| 27.14.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m})} \EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m}) | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1} | product(1-(x)^k, k = 1 .. infinity) = product(1 - (x)^(m), m = 1..infinity)
 | QPochhammer[x,x] == Product[1 - (x)^(m), {m, 1, Infinity}, GenerateConditions->None]
 | Failure | Successful | Successful [Tested: 1] | Successful [Tested: 1] | 
| 27.14.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerPhi@{x}} = \sum_{n=0}^{\infty}\npartitions[]@{n}x^{n}} \frac{1}{\EulerPhi@{x}} = \sum_{n=0}^{\infty}\npartitions[]@{n}x^{n} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1} | (1)/(product(1-(x)^k, k = 1 .. infinity)) = sum(nops(partition(n))*(x)^(n), n = 0..infinity)
 | Error
 | Failure | Missing Macro Error | Error | - | 
| 27.14.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \npartitions[]@{n} = \sum_{k=1}^{\infty}(-1)^{k+1}\left(\npartitions[]@{n-\omega(k)}+\npartitions[]@{n-\omega(-k)}\right)} \npartitions[]@{n} = \sum_{k=1}^{\infty}(-1)^{k+1}\left(\npartitions[]@{n-\omega(k)}+\npartitions[]@{n-\omega(-k)}\right) | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | nops(partition(n)) = sum((- 1)^(k + 1)*(nops(partition(n - omega(k)))+ nops(partition(n - omega(- k)))), k = 1..infinity)
 | Error
 | Error | Missing Macro Error | - | - | 
| 27.14.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n\npartitions[]@{n} = \sum_{k=1}^{n}\sumdivisors{1}@{k}\npartitions[]@{n-k}} n\npartitions[]@{n} = \sum_{k=1}^{n}\sumdivisors{1}@{k}\npartitions[]@{n-k} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | n*nops(partition(n)) = sum(add(divisors(1))*nops(partition(n - k)), k = 1..n)
 | Error
 | Error | Missing Macro Error | - | - | 
| 27.14.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \npartitions[]@{n} = \frac{1}{\cpi\sqrt{2}}\sum_{k=1}^{\infty}\sqrt{k}A_{k}(n)\*\left[\deriv{}{t}\frac{\sinh@{\ifrac{K\sqrt{t}}{k}}}{\sqrt{t}}\right]_{t=n-(1/24)}} \npartitions[]@{n} = \frac{1}{\cpi\sqrt{2}}\sum_{k=1}^{\infty}\sqrt{k}A_{k}(n)\*\left[\deriv{}{t}\frac{\sinh@{\ifrac{K\sqrt{t}}{k}}}{\sqrt{t}}\right]_{t=n-(1/24)} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | nops(partition(n)) = (1)/(Pi*sqrt(2))*sum(sqrt(k)*A[k](n)*diff((sinh((K*sqrt(t))/(k)))/(sqrt(t)), t)[t = n -(1/24)], k = 1..infinity)
 | Error
 | Error | Missing Macro Error | - | - | 
| 27.14.E12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\prod_{n=1}^{\infty}(1-e^{2\cpi\iunit n\tau})} \Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\prod_{n=1}^{\infty}(1-e^{2\cpi\iunit n\tau}) | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
 | DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*Product[1 - Exp[2*Pi*I*n*\[Tau]], {n, 1, Infinity}, GenerateConditions->None]
 | Missing Macro Error | Failure | - | Successful [Tested: 1] | 
| 27.14.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\EulerPhi@{e^{2\cpi\iunit\tau}}} \Dedekindeta@{\tau} = e^{\cpi\iunit\tau/12}\EulerPhi@{e^{2\cpi\iunit\tau}} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
 | DedekindEta[\[Tau]] == Exp[Pi*I*\[Tau]/12]*QPochhammer[Exp[2*Pi*I*\[Tau]],Exp[2*Pi*I*\[Tau]]]
 | Missing Macro Error | Failure | - | Successful [Tested: 1] | 
| 27.14.E14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\frac{a\tau+b}{c\tau+d}} = \varepsilon(-\iunit(c\tau+d))^{\frac{1}{2}}\Dedekindeta@{\tau}} \Dedekindeta@{\frac{a\tau+b}{c\tau+d}} = \varepsilon(-\iunit(c\tau+d))^{\frac{1}{2}}\Dedekindeta@{\tau} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
 | DedekindEta[Divide[a*\[Tau]+ b,c*\[Tau]+ d]] == \[CurlyEpsilon]*(- I*(c*\[Tau]+ d))^(Divide[1,2])* DedekindEta[\[Tau]]
 | Missing Macro Error | Failure | - | Failed [135 / 300] Result: Complex[0.13319594449577687, -0.32363546143707655]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 1], Rule[τ, Complex[0, 1]]}
Result: Complex[-0.41002146111087723, -1.4100702726503846]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[d, -2], Rule[ε, 2], Rule[τ, Complex[0, 1]]}
... skip entries to safe data | 
| 27.14.E15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 5\frac{(\EulerPhi@{x^{5}})^{5}}{(\EulerPhi@{x})^{6}} = \sum_{n=0}^{\infty}\npartitions[]@{5n+4}x^{n}} 5\frac{(\EulerPhi@{x^{5}})^{5}}{(\EulerPhi@{x})^{6}} = \sum_{n=0}^{\infty}\npartitions[]@{5n+4}x^{n} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1, |(x^{5})| < 1} | 5*((product(1-((x)^(5))^k, k = 1 .. infinity))^(5))/((product(1-(x)^k, k = 1 .. infinity))^(6)) = sum(nops(partition(5*n + 4))*(x)^(n), n = 0..infinity)
 | Error
 | Failure | Missing Macro Error | Error | - | 
| 27.14.E18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n}} x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1} | Error
 | x*Product[(1 - (x)^(n))^(24), {n, 1, Infinity}, GenerateConditions->None] == Sum[RamanujanTau[n]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]
 | Missing Macro Error | Successful | - | Successful [Tested: 1] |