Results of Mathieu Functions and Hill’s Equation: Difference between revisions

From testwiki
Jump to navigation Jump to search
Tag: Replaced
 
Line 1: Line 1:
<div style="width: 100%; height: 75vh; overflow: auto;">
<div style="-moz-column-count:2; column-count:2;">
{| class="wikitable sortable" style="margin: 0;"
; Notation : [[28.1|28.1 Special Notation]]<br>
|-
; Mathieu Functions of Integer Order : [[28.2|28.2 Definitions and Basic Properties]]<br>[[28.3|28.3 Graphics]]<br>[[28.4|28.4 Fourier Series]]<br>[[28.5|28.5 Second Solutions <math>\Mathieufe{n}</math> , <math>\Mathieuge{n}</math>]]<br>[[28.6|28.6 Expansions for Small <math>q</math>]]<br>[[28.7|28.7 Analytic Continuation of Eigenvalues]]<br>[[28.8|28.8 Asymptotic Expansions for Large <math>q</math>]]<br>[[28.9|28.9 Zeros]]<br>[[28.10|28.10 Integral Equations]]<br>[[28.11|28.11 Expansions in Series of Mathieu Functions]]<br>
! scope="col" style="position: sticky; top: 0;" | DLMF
; Mathieu Functions of Noninteger Order : [[28.12|28.12 Definitions and Basic Properties]]<br>[[28.13|28.13 Graphics]]<br>[[28.14|28.14 Fourier Series]]<br>[[28.15|28.15 Expansions for Small <math>q</math>]]<br>[[28.16|28.16 Asymptotic Expansions for Large <math>q</math>]]<br>[[28.17|28.17 Stability as <math>x\to\pm\infty</math>]]<br>[[28.18|28.18 Integrals and Integral Equations]]<br>[[28.19|28.19 Expansions in Series of <math>\Mathieume{\nu+2n}</math> Functions]]<br>
! scope="col" style="position: sticky; top: 0;" | Formula
; Modified Mathieu Functions : [[28.20|28.20 Definitions and Basic Properties]]<br>[[28.21|28.21 Graphics]]<br>[[28.22|28.22 Connection Formulas]]<br>[[28.23|28.23 Expansions in Series of Bessel Functions]]<br>[[28.24|28.24 Expansions in Series of Cross-Products of Bessel Functions or
! scope="col" style="position: sticky; top: 0;" | Constraints
Modified Bessel Functions]]<br>[[28.25|28.25 Asymptotic Expansions for Large <math>\realpart@@{z}</math>]]<br>[[28.26|28.26 Asymptotic Approximations for Large <math>q</math>]]<br>[[28.27|28.27 Addition Theorems]]<br>[[28.28|28.28 Integrals, Integral Representations, and Integral Equations]]<br>
! scope="col" style="position: sticky; top: 0;" | Maple
; Hill’s Equation : [[28.29|28.29 Definitions and Basic Properties]]<br>[[28.30|28.30 Expansions in Series of Eigenfunctions]]<br>[[28.31|28.31 Equations of Whittaker–Hill and Ince]]<br>
! scope="col" style="position: sticky; top: 0;" | Mathematica
; Applications : [[28.32|28.32 Mathematical Applications]]<br>[[28.33|28.33 Physical Applications]]<br>
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple
; Computation : [[28.34|28.34 Methods of Computation]]<br>[[28.35|28.35 Tables]]<br>[[28.36|28.36 Software]]<br>
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-
| [https://dlmf.nist.gov/28.1#Ex15 28.1#Ex15] || [[Item:Q8138|<math>\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S*exp(1)[n]*(s , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S*Subscript[E, n]*(s , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/28.1#Ex16 28.1#Ex16] || [[Item:Q8139|<math>\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>So[n](s , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[So, n][s , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/28.1#Ex17 28.1#Ex17] || [[Item:Q8140|<math>\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S*exp(1)[n]*(c , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S*Subscript[E, n]*(c , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/28.1#Ex18 28.1#Ex18] || [[Item:Q8141|<math>\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>So[n](c , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[So, n][c , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/28.2.E14 28.2.E14] || [[Item:Q8157|<math>w(z+\pi) = e^{\pi\iunit\nu}w(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(z+\pi) = e^{\pi\iunit\nu}w(z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(z + Pi) = exp(Pi*I*nu)*w(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[z + Pi] == Exp[Pi*I*\[Nu]]*w[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.389122976+2.558671223*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.732824151+2.239220255*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.3891229743891893, 2.5586712226918134]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.163689701656905, 2.469736091084983]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2.E17 28.2.E17] || [[Item:Q8160|<math>w(z+\pi)+w(z-\pi) = 2\cos@{\pi\nu}w(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(z+\pi)+w(z-\pi) = 2\cos@{\pi\nu}w(z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(z + Pi)+ w(z - Pi) = 2*cos(Pi*nu)*w(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[z + Pi]+ w[z - Pi] == 2*Cos[Pi*\[Nu]]*w[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.661616693+6.639028674*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.639028674+1.661616692*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [240 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.6616166873386105, 6.63902867151764]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[14.098728614058, -5.830503683799378]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2.E18 28.2.E18] || [[Item:Q8161|<math>w(z) = \sum_{n=-\infty}^{\infty}c_{2n}e^{\iunit(\nu+2n)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(z) = \sum_{n=-\infty}^{\infty}c_{2n}e^{\iunit(\nu+2n)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(z) = sum(c[2*n]*exp(I*(nu + 2*n)*z), n = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[z] == Sum[Subscript[c, 2*n]*Exp[I*(\[Nu]+ 2*n)*z], {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.2.E19 28.2.E19] || [[Item:Q8162|<math>qc_{2n+2}-\left(a-(\nu+2n)^{2}\right)c_{2n}+qc_{2n-2} = 0,</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>qc_{2n+2}-\left(a-(\nu+2n)^{2}\right)c_{2n}+qc_{2n-2} = 0,</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q*c[2*n + 2]-(a -(nu + 2*n)^(2))*c[2*n]+ q*c[2*n - 2] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q*Subscript[c, 2*n + 2]-(a -(\[Nu]+ 2*n)^(2))*Subscript[c, 2*n]+ q*Subscript[c, 2*n - 2] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.2.E20 28.2.E20] || [[Item:Q8163|<math>\lim_{n\to+\infty}|c_{2n}|^{1/|n|} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to+\infty}|c_{2n}|^{1/|n|} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((abs(c[2*n]))^(1/abs(n)), n = + infinity) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(Abs[Subscript[c, 2*n]])^(1/Abs[n]), n -> + Infinity, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.2.E23 28.2.E23] || [[Item:Q8166|<math>\Mathieueigvala{n}@{0} = n^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieueigvala{n}@{0} = n^{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuA(n, 0) = (n)^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuCharacteristicA[n, 0] == (n)^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/28.2.E24 28.2.E24] || [[Item:Q8167|<math>\Mathieueigvalb{n}@{0} = n^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieueigvalb{n}@{0} = n^{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuB(n, 0) = (n)^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuCharacteristicB[n, 0] == (n)^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/28.2.E26 28.2.E26] || [[Item:Q8169|<math>\Mathieueigvala{2n}@{-q} = \Mathieueigvala{2n}@{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieueigvala{2n}@{-q} = \Mathieueigvala{2n}@{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuA(2*n, - q) = MathieuA(2*n, q)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuCharacteristicA[2*n, - q] == MathieuCharacteristicA[2*n, q]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/28.2.E27 28.2.E27] || [[Item:Q8170|<math>\Mathieueigvala{2n+1}@{-q} = \Mathieueigvalb{2n+1}@{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieueigvala{2n+1}@{-q} = \Mathieueigvalb{2n+1}@{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuA(2*n + 1, - q) = MathieuB(2*n + 1, q)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuCharacteristicA[2*n + 1, - q] == MathieuCharacteristicB[2*n + 1, q]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/28.2.E28 28.2.E28] || [[Item:Q8171|<math>\Mathieueigvalb{2n+2}@{-q} = \Mathieueigvalb{2n+2}@{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieueigvalb{2n+2}@{-q} = \Mathieueigvalb{2n+2}@{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuB(2*n + 2, - q) = MathieuB(2*n + 2, q)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuCharacteristicB[2*n + 2, - q] == MathieuCharacteristicB[2*n + 2, q]</syntaxhighlight> || Failure || Failure || Successful [Tested: 30] || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/28.2#Ex4 28.2#Ex4] || [[Item:Q8172|<math>\Mathieuce{0}@{z}{0} = 1/\sqrt{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{0}@{z}{0} = 1/\sqrt{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(0, 0, z) = 1/(sqrt(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[0, 0, z] == 1/(Sqrt[2])</syntaxhighlight> || Failure || Successful || Skip - No test values generated || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/28.2#Ex5 28.2#Ex5] || [[Item:Q8173|<math>\Mathieuce{n}@{z}{0} = \cos@{nz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{n}@{z}{0} = \cos@{nz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(n, 0, z) = cos(n*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[n, 0, z] == Cos[n*z]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6753267742469401, 0.4379310296367226]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.1123802552186532, 0.12519411502047795]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2#Ex6 28.2#Ex6] || [[Item:Q8174|<math>\Mathieuse{n}@{z}{0} = \sin@{nz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuse{n}@{z}{0} = \sin@{nz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuSE(n, 0, z) = sin(n*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuS[n, 0, z] == Sin[n*z]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.17898073764673827, 1.8916506821927568]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.947243351054952, 0.9068272427732345]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2#Ex7 28.2#Ex7] || [[Item:Q8175|<math>\int_{0}^{2\pi}\left(\Mathieuce{n}@{x}{q}\right)^{2}\diff{x} = \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{2\pi}\left(\Mathieuce{n}@{x}{q}\right)^{2}\diff{x} = \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((MathieuCE(n, q, x))^(2), x = 0..2*Pi) = Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(MathieuC[n, q, x])^(2), {x, 0, 2*Pi}, GenerateConditions->None] == Pi</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[6.9214963829238805, 34.195194735367046]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-3.5092269783308243, -0.4627812517943034]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2#Ex8 28.2#Ex8] || [[Item:Q8176|<math>\int_{0}^{2\pi}\left(\Mathieuse{n}@{x}{q}\right)^{2}\diff{x} = \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{2\pi}\left(\Mathieuse{n}@{x}{q}\right)^{2}\diff{x} = \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((MathieuSE(n, q, x))^(2), x = 0..2*Pi) = Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(MathieuS[n, q, x])^(2), {x, 0, 2*Pi}, GenerateConditions->None] == Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [12 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.15495486e-1+.3109277201e-1*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.592260336+2.720760990*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-11.13627493115099, -34.66471446201499]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.303849824281496, -4.82944497847242]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2.E31 28.2.E31] || [[Item:Q8177|<math>\int_{0}^{2\pi}\Mathieuce{m}@{x}{q}\Mathieuce{n}@{x}{q}\diff{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{2\pi}\Mathieuce{m}@{x}{q}\Mathieuce{n}@{x}{q}\diff{x} = 0</syntaxhighlight> || <math>n \neq m</math> || <syntaxhighlight lang=mathematica>int(MathieuCE(m, q, x)*MathieuCE(n, q, x), x = 0..2*Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[MathieuC[m, q, x]*MathieuC[n, q, x], {x, 0, 2*Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.2.E32 28.2.E32] || [[Item:Q8178|<math>\int_{0}^{2\pi}\Mathieuse{m}@{x}{q}\Mathieuse{n}@{x}{q}\diff{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{2\pi}\Mathieuse{m}@{x}{q}\Mathieuse{n}@{x}{q}\diff{x} = 0</syntaxhighlight> || <math>n \neq m</math> || <syntaxhighlight lang=mathematica>int(MathieuSE(m, q, x)*MathieuSE(n, q, x), x = 0..2*Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[MathieuS[m, q, x]*MathieuS[n, q, x], {x, 0, 2*Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.2.E33 28.2.E33] || [[Item:Q8179|<math>\int_{0}^{2\pi}\Mathieuce{m}@{x}{q}\Mathieuse{n}@{x}{q}\diff{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{2\pi}\Mathieuce{m}@{x}{q}\Mathieuse{n}@{x}{q}\diff{x} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(MathieuCE(m, q, x)*MathieuSE(n, q, x), x = 0..2*Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[MathieuC[m, q, x]*MathieuS[n, q, x], {x, 0, 2*Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.2.E34 28.2.E34] || [[Item:Q8180|<math>\Mathieuce{2n}@{z}{-q} = (-1)^{n}\Mathieuce{2n}@{\tfrac{1}{2}\pi-z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{2n}@{z}{-q} = (-1)^{n}\Mathieuce{2n}@{\tfrac{1}{2}\pi-z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(2*n, - q, z) = (- 1)^(n)* MathieuCE(2*n, q, (1)/(2)*Pi - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[2*n, - q, z] == (- 1)^(n)* MathieuC[2*n, q, Divide[1,2]*Pi - z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 210] || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.40308591506050084, 0.46785287118948815]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.60084404002985, 1.182666432116677]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2.E35 28.2.E35] || [[Item:Q8181|<math>\Mathieuce{2n+1}@{z}{-q} = (-1)^{n}\Mathieuse{2n+1}@{\tfrac{1}{2}\pi-z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{2n+1}@{z}{-q} = (-1)^{n}\Mathieuse{2n+1}@{\tfrac{1}{2}\pi-z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(2*n + 1, - q, z) = (- 1)^(n)* MathieuSE(2*n + 1, q, (1)/(2)*Pi - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[2*n + 1, - q, z] == (- 1)^(n)* MathieuS[2*n + 1, q, Divide[1,2]*Pi - z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 210] || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.5024747894079764, -2.6392504264802374]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.189026591129222, 0.3274807845663039]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2.E36 28.2.E36] || [[Item:Q8182|<math>\Mathieuse{2n+1}@{z}{-q} = (-1)^{n}\Mathieuce{2n+1}@{\tfrac{1}{2}\pi-z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuse{2n+1}@{z}{-q} = (-1)^{n}\Mathieuce{2n+1}@{\tfrac{1}{2}\pi-z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuSE(2*n + 1, - q, z) = (- 1)^(n)* MathieuCE(2*n + 1, q, (1)/(2)*Pi - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuS[2*n + 1, - q, z] == (- 1)^(n)* MathieuC[2*n + 1, q, Divide[1,2]*Pi - z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 210] || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.280260494012772, -3.1853558239364403]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-3.634104542197209, -1.1703184896606507]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.2.E37 28.2.E37] || [[Item:Q8183|<math>\Mathieuse{2n+2}@{z}{-q} = (-1)^{n}\Mathieuse{2n+2}@{\tfrac{1}{2}\pi-z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuse{2n+2}@{z}{-q} = (-1)^{n}\Mathieuse{2n+2}@{\tfrac{1}{2}\pi-z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuSE(2*n + 2, - q, z) = (- 1)^(n)* MathieuSE(2*n + 2, q, (1)/(2)*Pi - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuS[2*n + 2, - q, z] == (- 1)^(n)* MathieuS[2*n + 2, q, Divide[1,2]*Pi - z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3430671662+7.821986266*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 20.99712460-1.294028748*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.02456715747845, -1.021331524922309]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.169415024309792, -3.4466753320968735]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.4.E1 28.4.E1] || [[Item:Q8186|<math>\Mathieuce{2n}@{z}{q} = \sum_{m=0}^{\infty}A^{2n}_{2m}(q)\cos@@{2mz}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{2n}@{z}{q} = \sum_{m=0}^{\infty}A^{2n}_{2m}(q)\cos@@{2mz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(2*n, q, z) = sum((A[2*m])^(2*n)(q)* cos(2*m*z), m = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[2*n, q, z] == Sum[(Subscript[A, 2*m])^(2*n)[q]* Cos[2*m*z], {m, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.4.E2 28.4.E2] || [[Item:Q8187|<math>\Mathieuce{2n+1}@{z}{q} = \sum_{m=0}^{\infty}A^{2n+1}_{2m+1}(q)\cos@@{(2m+1)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{2n+1}@{z}{q} = \sum_{m=0}^{\infty}A^{2n+1}_{2m+1}(q)\cos@@{(2m+1)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(2*n + 1, q, z) = sum((A[2*m + 1])^(2*n + 1)(q)* cos((2*m + 1)*z), m = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[2*n + 1, q, z] == Sum[(Subscript[A, 2*m + 1])^(2*n + 1)[q]* Cos[(2*m + 1)*z], {m, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.4.E3 28.4.E3] || [[Item:Q8188|<math>\Mathieuse{2n+1}@{z}{q} = \sum_{m=0}^{\infty}B^{2n+1}_{2m+1}(q)\sin@@{(2m+1)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuse{2n+1}@{z}{q} = \sum_{m=0}^{\infty}B^{2n+1}_{2m+1}(q)\sin@@{(2m+1)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuSE(2*n + 1, q, z) = sum((B[2*m + 1])^(2*n + 1)(q)* sin((2*m + 1)*z), m = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuS[2*n + 1, q, z] == Sum[(Subscript[B, 2*m + 1])^(2*n + 1)[q]* Sin[(2*m + 1)*z], {m, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.4.E4 28.4.E4] || [[Item:Q8189|<math>\Mathieuse{2n+2}@{z}{q} = \sum_{m=0}^{\infty}B^{2n+2}_{2m+2}(q)\sin@@{(2m+2)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuse{2n+2}@{z}{q} = \sum_{m=0}^{\infty}B^{2n+2}_{2m+2}(q)\sin@@{(2m+2)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuSE(2*n + 2, q, z) = sum((B[2*m + 2])^(2*n + 2)(q)* sin((2*m + 2)*z), m = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuS[2*n + 2, q, z] == Sum[(Subscript[B, 2*m + 2])^(2*n + 2)[q]* Sin[(2*m + 2)*z], {m, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex1 28.4#Ex1] || [[Item:Q8190|<math>aA_{0}-qA_{2} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>aA_{0}-qA_{2} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a*A[0]- q*A[2] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a*Subscript[A, 0]- q*Subscript[A, 2] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex2 28.4#Ex2] || [[Item:Q8191|<math>(a-4)A_{2}-q(2A_{0}+A_{4}) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(a-4)A_{2}-q(2A_{0}+A_{4}) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 4)*A[2]- q*(2*A[0]+ A[4]) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 4)*Subscript[A, 2]- q*(2*Subscript[A, 0]+ Subscript[A, 4]) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex3 28.4#Ex3] || [[Item:Q8192|<math>(a-4m^{2})A_{2m}-q(A_{2m-2}+A_{2m+2}) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(a-4m^{2})A_{2m}-q(A_{2m-2}+A_{2m+2}) = 0</syntaxhighlight> || <math>a = \Mathieueigvala{2n}@{q}, A_{2m} = A_{2m}^{2n}(q)</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 4*(m)^(2))*A[2*m]- q*(A[2*m - 2]+ A[2*m + 2]) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 4*(m)^(2))*Subscript[A, 2*m]- q*(Subscript[A, 2*m - 2]+ Subscript[A, 2*m + 2]) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex4 28.4#Ex4] || [[Item:Q8193|<math>(a-1-q)A_{1}-qA_{3} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(a-1-q)A_{1}-qA_{3} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 1 - q)*A[1]- q*A[3] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 1 - q)*Subscript[A, 1]- q*Subscript[A, 3] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex5 28.4#Ex5] || [[Item:Q8194|<math>\left(a-(2m+1)^{2}\right)A_{2m+1}-q(A_{2m-1}+A_{2m+3}) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(a-(2m+1)^{2}\right)A_{2m+1}-q(A_{2m-1}+A_{2m+3}) = 0</syntaxhighlight> || <math>a = \Mathieueigvala{2n+1}@{q}, A_{2m+1} = A_{2m+1}^{2n+1}(q)</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a -(2*m + 1)^(2))*A[2*m + 1]- q*(A[2*m - 1]+ A[2*m + 3]) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a -(2*m + 1)^(2))*Subscript[A, 2*m + 1]- q*(Subscript[A, 2*m - 1]+ Subscript[A, 2*m + 3]) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex6 28.4#Ex6] || [[Item:Q8195|<math>(a-1+q)B_{1}-qB_{3} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(a-1+q)B_{1}-qB_{3} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 1 + q)*B[1]- q*B[3] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 1 + q)*Subscript[B, 1]- q*Subscript[B, 3] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex7 28.4#Ex7] || [[Item:Q8196|<math>\left(a-(2m+1)^{2}\right)B_{2m+1}-q(B_{2m-1}+B_{2m+3}) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(a-(2m+1)^{2}\right)B_{2m+1}-q(B_{2m-1}+B_{2m+3}) = 0</syntaxhighlight> || <math>a = \Mathieueigvalb{2n+1}@{q}, B_{2m+1} = B_{2m+1}^{2n+1}(q)</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a -(2*m + 1)^(2))*B[2*m + 1]- q*(B[2*m - 1]+ B[2*m + 3]) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a -(2*m + 1)^(2))*Subscript[B, 2*m + 1]- q*(Subscript[B, 2*m - 1]+ Subscript[B, 2*m + 3]) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex8 28.4#Ex8] || [[Item:Q8197|<math>(a-4)B_{2}-qB_{4} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(a-4)B_{2}-qB_{4} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 4)*B[2]- q*B[4] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 4)*Subscript[B, 2]- q*Subscript[B, 4] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex9 28.4#Ex9] || [[Item:Q8198|<math>(a-4m^{2})B_{2m}-q(B_{2m-2}+B_{2m+2}) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(a-4m^{2})B_{2m}-q(B_{2m-2}+B_{2m+2}) = 0</syntaxhighlight> || <math>a = \Mathieueigvalb{2n+2}@{q}, B_{2m+2} = B_{2m+2}^{2n+2}(q).</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 4*(m)^(2))*B[2*m]- q*(B[2*m - 2]+ B[2*m + 2]) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - 4*(m)^(2))*Subscript[B, 2*m]- q*(Subscript[B, 2*m - 2]+ Subscript[B, 2*m + 2]) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4.E9 28.4.E9] || [[Item:Q8199|<math>2\left(A^{2n}_{0}(q)\right)^{2}+\sum_{m=1}^{\infty}\left(A^{2n}_{2m}(q)\right)^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>2\left(A^{2n}_{0}(q)\right)^{2}+\sum_{m=1}^{\infty}\left(A^{2n}_{2m}(q)\right)^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">2*((A[0])^(2*n)(q))^(2)+ sum(((A[2*m])^(2*n)(q))^(2), m = 1..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">2*((Subscript[A, 0])^(2*n)[q])^(2)+ Sum[((Subscript[A, 2*m])^(2*n)[q])^(2), {m, 1, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4.E10 28.4.E10] || [[Item:Q8200|<math>\sum_{m=0}^{\infty}\left(A^{2n+1}_{2m+1}(q)\right)^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{m=0}^{\infty}\left(A^{2n+1}_{2m+1}(q)\right)^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(((A[2*m + 1])^(2*n + 1)(q))^(2), m = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[((Subscript[A, 2*m + 1])^(2*n + 1)[q])^(2), {m, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4.E11 28.4.E11] || [[Item:Q8201|<math>\sum_{m=0}^{\infty}\left(B^{2n+1}_{2m+1}(q)\right)^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{m=0}^{\infty}\left(B^{2n+1}_{2m+1}(q)\right)^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(((B[2*m + 1])^(2*n + 1)(q))^(2), m = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[((Subscript[B, 2*m + 1])^(2*n + 1)[q])^(2), {m, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4.E12 28.4.E12] || [[Item:Q8202|<math>\sum_{m=0}^{\infty}\left(B^{2n+2}_{2m+2}(q)\right)^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{m=0}^{\infty}\left(B^{2n+2}_{2m+2}(q)\right)^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(((B[2*m + 2])^(2*n + 2)(q))^(2), m = 0..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[((Subscript[B, 2*m + 2])^(2*n + 2)[q])^(2), {m, 0, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex10 28.4#Ex10] || [[Item:Q8203|<math>A^{0}_{0}(0) = 1/\sqrt{2},\quad A^{2n}_{2n}(0)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A^{0}_{0}(0) = 1/\sqrt{2},\quad A^{2n}_{2n}(0)</syntaxhighlight> || <math>n > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A[0])^(0)(0) = 1/(sqrt(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[A, 0])^(0)[0] == 1/(Sqrt[2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex11 28.4#Ex11] || [[Item:Q8204|<math>A^{2n}_{2m}(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A^{2n}_{2m}(0) = 0</syntaxhighlight> || <math>n \neq m</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A[2*m])^(2*n)(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[A, 2*m])^(2*n)[0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex12 28.4#Ex12] || [[Item:Q8205|<math>A^{2n+1}_{2n+1}(0) = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A^{2n+1}_{2n+1}(0) = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A[2*n + 1])^(2*n + 1)(0) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[A, 2*n + 1])^(2*n + 1)[0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex13 28.4#Ex13] || [[Item:Q8206|<math>A^{2n+1}_{2m+1}(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A^{2n+1}_{2m+1}(0) = 0</syntaxhighlight> || <math>n \neq m</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A[2*m + 1])^(2*n + 1)(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[A, 2*m + 1])^(2*n + 1)[0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex14 28.4#Ex14] || [[Item:Q8207|<math>B^{2n+1}_{2n+1}(0) = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>B^{2n+1}_{2n+1}(0) = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(B[2*n + 1])^(2*n + 1)(0) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[B, 2*n + 1])^(2*n + 1)[0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex15 28.4#Ex15] || [[Item:Q8208|<math>B^{2n+1}_{2m+1}(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>B^{2n+1}_{2m+1}(0) = 0</syntaxhighlight> || <math>n \neq m</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(B[2*m + 1])^(2*n + 1)(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[B, 2*m + 1])^(2*n + 1)[0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex16 28.4#Ex16] || [[Item:Q8209|<math>B^{2n+2}_{2n+2}(0) = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>B^{2n+2}_{2n+2}(0) = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(B[2*n + 2])^(2*n + 2)(0) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[B, 2*n + 2])^(2*n + 2)[0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4#Ex17 28.4#Ex17] || [[Item:Q8210|<math>B^{2n+2}_{2m+2}(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>B^{2n+2}_{2m+2}(0) = 0</syntaxhighlight> || <math>n \neq m</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(B[2*m + 2])^(2*n + 2)(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[B, 2*m + 2])^(2*n + 2)[0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4.E17 28.4.E17] || [[Item:Q8211|<math>A^{2n}_{2m}(-q) = (-1)^{n-m}A^{2n}_{2m}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A^{2n}_{2m}(-q) = (-1)^{n-m}A^{2n}_{2m}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A[2*m])^(2*n)(- q) = (- 1)^(n - m)* (A[2*m])^(2*n)(q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[A, 2*m])^(2*n)[- q] == (- 1)^(n - m)* (Subscript[A, 2*m])^(2*n)[q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4.E18 28.4.E18] || [[Item:Q8212|<math>B^{2n+2}_{2m+2}(-q) = (-1)^{n-m}B^{2n+2}_{2m+2}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>B^{2n+2}_{2m+2}(-q) = (-1)^{n-m}B^{2n+2}_{2m+2}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(B[2*m + 2])^(2*n + 2)(- q) = (- 1)^(n - m)* (B[2*m + 2])^(2*n + 2)(q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[B, 2*m + 2])^(2*n + 2)[- q] == (- 1)^(n - m)* (Subscript[B, 2*m + 2])^(2*n + 2)[q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4.E19 28.4.E19] || [[Item:Q8213|<math>A^{2n+1}_{2m+1}(-q) = (-1)^{n-m}B^{2n+1}_{2m+1}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A^{2n+1}_{2m+1}(-q) = (-1)^{n-m}B^{2n+1}_{2m+1}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(A[2*m + 1])^(2*n + 1)(- q) = (- 1)^(n - m)* (B[2*m + 1])^(2*n + 1)(q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[A, 2*m + 1])^(2*n + 1)[- q] == (- 1)^(n - m)* (Subscript[B, 2*m + 1])^(2*n + 1)[q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.4.E20 28.4.E20] || [[Item:Q8214|<math>B^{2n+1}_{2m+1}(-q) = (-1)^{n-m}A^{2n+1}_{2m+1}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>B^{2n+1}_{2m+1}(-q) = (-1)^{n-m}A^{2n+1}_{2m+1}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(B[2*m + 1])^(2*n + 1)(- q) = (- 1)^(n - m)* (A[2*m + 1])^(2*n + 1)(q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[B, 2*m + 1])^(2*n + 1)[- q] == (- 1)^(n - m)* (Subscript[A, 2*m + 1])^(2*n + 1)[q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.5.E5 28.5.E5] || [[Item:Q8226|<math>(C_{n}(q))^{2}\int_{0}^{2\pi}(f_{n}(x,q))^{2}\diff{x} = (S_{n}(q))^{2}\int_{0}^{2\pi}(g_{n}(x,q))^{2}\diff{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(C_{n}(q))^{2}\int_{0}^{2\pi}(f_{n}(x,q))^{2}\diff{x} = (S_{n}(q))^{2}\int_{0}^{2\pi}(g_{n}(x,q))^{2}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(C[n](q))^(2)* int((f[n](x , q))^(2), x = 0..2*Pi) = (S[n](q))^(2)* int((g[n](x , q))^(2), x = 0..2*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Subscript[C, n][q])^(2)* Integrate[(Subscript[f, n][x , q])^(2), {x, 0, 2*Pi}, GenerateConditions->None] == (Subscript[S, n][q])^(2)* Integrate[(Subscript[g, n][x , q])^(2), {x, 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [240 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -165.3668092+.1069227006e-6*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, C[n] = 1/2*3^(1/2)+1/2*I, S[n] = 1/2*3^(1/2)+1/2*I, f[n] = 1/2*3^(1/2)+1/2*I, g[n] = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -165.3668092+.1069227006e-6*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, C[n] = 1/2*3^(1/2)+1/2*I, S[n] = 1/2*3^(1/2)+1/2*I, f[n] = 1/2*3^(1/2)+1/2*I, g[n] = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Error
|-
| [https://dlmf.nist.gov/28.5.E5 28.5.E5] || [[Item:Q8226|<math>(S_{n}(q))^{2}\int_{0}^{2\pi}(g_{n}(x,q))^{2}\diff{x} = \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(S_{n}(q))^{2}\int_{0}^{2\pi}(g_{n}(x,q))^{2}\diff{x} = \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(S[n](q))^(2)* int((g[n](x , q))^(2), x = 0..2*Pi) = Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Subscript[S, n][q])^(2)* Integrate[(Subscript[g, n][x , q])^(2), {x, 0, 2*Pi}, GenerateConditions->None] == Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -85.82499725+.5347530766e-7*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, S[n] = 1/2*3^(1/2)+1/2*I, g[n] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -85.82499725+.5347530766e-7*I
Test Values: {q = 1/2*3^(1/2)+1/2*I, S[n] = 1/2*3^(1/2)+1/2*I, g[n] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Error
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.5#Ex1 28.5#Ex1] || [[Item:Q8227|<math>C_{2m}(-q) = C_{2m}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>C_{2m}(-q) = C_{2m}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">C[2*m](- q) = C[2*m](q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[C, 2*m][- q] == Subscript[C, 2*m][q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.5#Ex2 28.5#Ex2] || [[Item:Q8228|<math>C_{2m+1}(-q) = S_{2m+1}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>C_{2m+1}(-q) = S_{2m+1}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">C[2*m + 1](- q) = S[2*m + 1](q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[C, 2*m + 1][- q] == Subscript[S, 2*m + 1][q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.5#Ex3 28.5#Ex3] || [[Item:Q8229|<math>S_{2m+2}(-q) = S_{2m+2}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>S_{2m+2}(-q) = S_{2m+2}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">S[2*m + 2](- q) = S[2*m + 2](q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[S, 2*m + 2][- q] == Subscript[S, 2*m + 2][q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.6.E20 28.6.E20] || [[Item:Q8254|<math>\liminf_{n\to\infty}\frac{\rho_{n}^{(j)}}{n^{2}} \geq kk^{\prime}(\compellintKk@{k})^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\liminf_{n\to\infty}\frac{\rho_{n}^{(j)}}{n^{2}} \geq kk^{\prime}(\compellintKk@{k})^{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>[n = infinity]*((rho[n])^(j))/((n)^(2)) >= k*sqrt(1 - (k)^(2))*(EllipticK(k))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[, n -> Infinity]*Divide[(Subscript[\[Rho], n])^(j),(n)^(2)] >= k*Sqrt[1 - (k)^(2)]*(EllipticK[(k)^2])^(2)</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: GreaterEqual[Complex[0.5000000000000001, 0.8660254037844386], Indeterminate]
Test Values: {Rule[j, 1], Rule[k, 1], Rule[n, 1], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ρ, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: GreaterEqual[Complex[0.12500000000000003, 0.21650635094610965], Indeterminate]
Test Values: {Rule[j, 1], Rule[k, 1], Rule[n, 2], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ρ, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.6.E20 28.6.E20] || [[Item:Q8254|<math>kk^{\prime}(\compellintKk@{k})^{2} = 2.04183\;4\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>kk^{\prime}(\compellintKk@{k})^{2} = 2.04183\;4\dots</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>k*sqrt(1 - (k)^(2))*(EllipticK(k))^(2) = 2.041834</syntaxhighlight> || <syntaxhighlight lang=mathematica>k*Sqrt[1 - (k)^(2)]*(EllipticK[(k)^2])^(2) == 2.041834</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.25477173820126, -1.5664714954570549]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.7.E1 28.7.E1] || [[Item:Q8261|<math>\sum_{n=0}^{\infty}\left(\Mathieueigvala{2n}@{q}-(2n)^{2}\right) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\left(\Mathieueigvala{2n}@{q}-(2n)^{2}\right) = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(MathieuA(2*n, q)-(2*n)^(2), n = 0..infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[MathieuCharacteristicA[2*n, q]-(2*n)^(2), {n, 0, Infinity}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.7.E2 28.7.E2] || [[Item:Q8262|<math>\sum_{n=0}^{\infty}\left(\Mathieueigvala{2n+1}@{q}-(2n+1)^{2}\right) = q</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\left(\Mathieueigvala{2n+1}@{q}-(2n+1)^{2}\right) = q</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(MathieuA(2*n + 1, q)-(2*n + 1)^(2), n = 0..infinity) = q</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[MathieuCharacteristicA[2*n + 1, q]-(2*n + 1)^(2), {n, 0, Infinity}, GenerateConditions->None] == q</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.7.E3 28.7.E3] || [[Item:Q8263|<math>\sum_{n=0}^{\infty}\left(\Mathieueigvalb{2n+1}@{q}-(2n+1)^{2}\right) = -q</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\left(\Mathieueigvalb{2n+1}@{q}-(2n+1)^{2}\right) = -q</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(MathieuB(2*n + 1, q)-(2*n + 1)^(2), n = 0..infinity) = - q</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[MathieuCharacteristicB[2*n + 1, q]-(2*n + 1)^(2), {n, 0, Infinity}, GenerateConditions->None] == - q</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.7.E4 28.7.E4] || [[Item:Q8264|<math>\sum_{n=0}^{\infty}\left(\Mathieueigvalb{2n+2}@{q}-(2n+2)^{2}\right) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=0}^{\infty}\left(\Mathieueigvalb{2n+2}@{q}-(2n+2)^{2}\right) = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(MathieuB(2*n + 2, q)-(2*n + 2)^(2), n = 0..infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[MathieuCharacteristicB[2*n + 2, q]-(2*n + 2)^(2), {n, 0, Infinity}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.8#Ex3 28.8#Ex3] || [[Item:Q8273|<math>\dfrac{\Mathieuce{m}@{x}{h^{2}}}{\Mathieuce{m}@{0}{h^{2}}} = \dfrac{2^{m-(\ifrac{1}{2})}}{\sigma_{m}}\left(W_{m}^{+}(x)(P_{m}(x)-Q_{m}(x))+W_{m}^{-}(x)(P_{m}(x)+Q_{m}(x))\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\dfrac{\Mathieuce{m}@{x}{h^{2}}}{\Mathieuce{m}@{0}{h^{2}}} = \dfrac{2^{m-(\ifrac{1}{2})}}{\sigma_{m}}\left(W_{m}^{+}(x)(P_{m}(x)-Q_{m}(x))+W_{m}^{-}(x)(P_{m}(x)+Q_{m}(x))\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(MathieuCE(m, (h)^(2), x))/(MathieuCE(m, (h)^(2), 0)) = ((2)^(m -((1)/(2))))/(sigma[m])*((W[m])^(+)(x)*(P[m](x)- Q[m](x))+ (W[m])^(-)(x)*(P[m](x)+ Q[m](x)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[MathieuC[m, (h)^(2), x],MathieuC[m, (h)^(2), 0]] == Divide[(2)^(m -(Divide[1,2])),Subscript[\[Sigma], m]]*((Subscript[W, m])^(+)[x]*(Subscript[P, m][x]- Subscript[Q, m][x])+ (Subscript[W, m])^(-)[x]*(Subscript[P, m][x]+ Subscript[Q, m][x]))</syntaxhighlight> || Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.8#Ex4 28.8#Ex4] || [[Item:Q8274|<math>\dfrac{\Mathieuse{m+1}@{x}{h^{2}}}{\Mathieuse{m+1}'@{0}{h^{2}}} = \dfrac{2^{m-(\ifrac{1}{2})}}{\tau_{m+1}}\left(W_{m}^{+}(x)(P_{m}(x)-Q_{m}(x))-W_{m}^{-}(x)(P_{m}(x)+Q_{m}(x))\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\dfrac{\Mathieuse{m+1}@{x}{h^{2}}}{\Mathieuse{m+1}'@{0}{h^{2}}} = \dfrac{2^{m-(\ifrac{1}{2})}}{\tau_{m+1}}\left(W_{m}^{+}(x)(P_{m}(x)-Q_{m}(x))-W_{m}^{-}(x)(P_{m}(x)+Q_{m}(x))\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(MathieuSE(m + 1, (h)^(2), x))/(subs( temp=0, diff( MathieuSE(m + 1, (h)^(2), temp), temp$(1) ) )) = ((2)^(m -((1)/(2))))/(tau[m + 1])*((W[m])^(+)(x)*(P[m](x)- Q[m](x))- (W[m])^(-)(x)*(P[m](x)+ Q[m](x)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[MathieuS[m + 1, (h)^(2), x],D[MathieuS[m + 1, (h)^(2), temp], {temp, 1}]/.temp-> 0] == Divide[(2)^(m -(Divide[1,2])),Subscript[\[Tau], m + 1]]*((Subscript[W, m])^(+)[x]*(Subscript[P, m][x]- Subscript[Q, m][x])- (Subscript[W, m])^(-)[x]*(Subscript[P, m][x]+ Subscript[Q, m][x]))</syntaxhighlight> || Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.10.E1 28.10.E1] || [[Item:Q8280|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(2*h*cos(z)*cos(t))*MathieuCE(2*n, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[0])^(2*n)((h)^(2)))/(MathieuCE(2*n, (h)^(2), (1)/(2)*Pi))*MathieuCE(2*n, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[2*h*Cos[z]*Cos[t]]*MathieuC[2*n, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 0])^(2*n)[(h)^(2)],MathieuC[2*n, (h)^(2), Divide[1,2]*Pi]]*MathieuC[2*n, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.10.E2 28.10.E2] || [[Item:Q8281|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{0}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{0}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cosh(2*h*sin(z)*sin(t))*MathieuCE(2*n, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[0])^(2*n)((h)^(2)))/(MathieuCE(2*n, (h)^(2), 0))*MathieuCE(2*n, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cosh[2*h*Sin[z]*Sin[t]]*MathieuC[2*n, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 0])^(2*n)[(h)^(2)],MathieuC[2*n, (h)^(2), 0]]*MathieuC[2*n, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.10.E3 28.10.E3] || [[Item:Q8282|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = -\frac{hA_{1}^{2n+1}(h^{2})}{\Mathieuce{2n+1}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = -\frac{hA_{1}^{2n+1}(h^{2})}{\Mathieuce{2n+1}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(2*h*cos(z)*cos(t))*MathieuCE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = -((hA[1])^(2*n + 1)((h)^(2)))/(subs( temp=(1)/(2)*Pi, diff( MathieuCE(2*n + 1, (h)^(2), temp), temp$(1) ) ))*MathieuCE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[2*h*Cos[z]*Cos[t]]*MathieuC[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == -Divide[(Subscript[hA, 1])^(2*n + 1)[(h)^(2)],D[MathieuC[2*n + 1, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi]*MathieuC[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.10.E4 28.10.E4] || [[Item:Q8283|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = \frac{A_{1}^{2n+1}(h^{2})}{2\Mathieuce{2n+1}@{0}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = \frac{A_{1}^{2n+1}(h^{2})}{2\Mathieuce{2n+1}@{0}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(z)*cos(t)*cosh(2*h*sin(z)*sin(t))*MathieuCE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[1])^(2*n + 1)((h)^(2)))/(2*MathieuCE(2*n + 1, (h)^(2), 0))*MathieuCE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[z]*Cos[t]*Cosh[2*h*Sin[z]*Sin[t]]*MathieuC[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 1])^(2*n + 1)[(h)^(2)],2*MathieuC[2*n + 1, (h)^(2), 0]]*MathieuC[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.10.E5 28.10.E5] || [[Item:Q8284|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{hB_{1}^{2n+1}(h^{2})}{\Mathieuse{2n+1}'@{0}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{hB_{1}^{2n+1}(h^{2})}{\Mathieuse{2n+1}'@{0}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sinh(2*h*sin(z)*sin(t))*MathieuSE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((hB[1])^(2*n + 1)((h)^(2)))/(subs( temp=0, diff( MathieuSE(2*n + 1, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sinh[2*h*Sin[z]*Sin[t]]*MathieuS[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[hB, 1])^(2*n + 1)[(h)^(2)],D[MathieuS[2*n + 1, (h)^(2), temp], {temp, 1}]/.temp-> 0]*MathieuS[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.10.E6 28.10.E6] || [[Item:Q8285|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{B_{1}^{2n+1}(h^{2})}{2\Mathieuse{2n+1}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{B_{1}^{2n+1}(h^{2})}{2\Mathieuse{2n+1}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(z)*sin(t)*cos(2*h*cos(z)*cos(t))*MathieuSE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((B[1])^(2*n + 1)((h)^(2)))/(2*MathieuSE(2*n + 1, (h)^(2), (1)/(2)*Pi))*MathieuSE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[z]*Sin[t]*Cos[2*h*Cos[z]*Cos[t]]*MathieuS[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[B, 1])^(2*n + 1)[(h)^(2)],2*MathieuS[2*n + 1, (h)^(2), Divide[1,2]*Pi]]*MathieuS[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.10.E7 28.10.E7] || [[Item:Q8286|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = -\frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = -\frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(z)*sin(t)*sin(2*h*cos(z)*cos(t))*MathieuSE(2*n + 2, (h)^(2), t), t = 0..(Pi)/(2)) = -((hB[2])^(2*n + 2)((h)^(2)))/(2*subs( temp=(1)/(2)*Pi, diff( MathieuSE(2*n + 2, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 2, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[z]*Sin[t]*Sin[2*h*Cos[z]*Cos[t]]*MathieuS[2*n + 2, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == -Divide[(Subscript[hB, 2])^(2*n + 2)[(h)^(2)],2*(D[MathieuS[2*n + 2, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi)]*MathieuS[2*n + 2, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.10.E8 28.10.E8] || [[Item:Q8287|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = \frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{0}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = \frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{0}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(z)*cos(t)*sinh(2*h*sin(z)*sin(t))*MathieuSE(2*n + 2, (h)^(2), t), t = 0..(Pi)/(2)) = ((hB[2])^(2*n + 2)((h)^(2)))/(2*subs( temp=0, diff( MathieuSE(2*n + 2, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 2, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[z]*Cos[t]*Sinh[2*h*Sin[z]*Sin[t]]*MathieuS[2*n + 2, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[hB, 2])^(2*n + 2)[(h)^(2)],2*(D[MathieuS[2*n + 2, (h)^(2), temp], {temp, 1}]/.temp-> 0)]*MathieuS[2*n + 2, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.11.E3 28.11.E3] || [[Item:Q8293|<math>1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>1 = 2*sum((A[0])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 == 2*Sum[(Subscript[A, 0])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.11.E4 28.11.E4] || [[Item:Q8294|<math>\cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}</syntaxhighlight> || <math>m \neq 0</math> || <syntaxhighlight lang=mathematica>cos(2*m*z) = sum((A[2*m])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[2*m*z] == Sum[(Subscript[A, 2*m])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.11.E5 28.11.E5] || [[Item:Q8295|<math>\cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((2*m + 1)*z) = sum((A[2*m + 1])^(2*n + 1)(q)* MathieuCE(2*n + 1, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[(2*m + 1)*z] == Sum[(Subscript[A, 2*m + 1])^(2*n + 1)[q]* MathieuC[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.11.E6 28.11.E6] || [[Item:Q8296|<math>\sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((2*m + 1)*z) = sum((B[2*m + 1])^(2*n + 1)(q)* MathieuSE(2*n + 1, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[(2*m + 1)*z] == Sum[(Subscript[B, 2*m + 1])^(2*n + 1)[q]* MathieuS[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.11.E7 28.11.E7] || [[Item:Q8297|<math>\sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((2*m + 2)*z) = sum((B[2*m + 2])^(2*n + 2)(q)* MathieuSE(2*n + 2, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[(2*m + 2)*z] == Sum[(Subscript[B, 2*m + 2])^(2*n + 2)[q]* MathieuS[2*n + 2, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.12.E4 28.12.E4] || [[Item:Q8301|<math>\Mathieume{\nu}@{z}{0} = e^{\iunit\nu z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieume{\nu}@{z}{0} = e^{\iunit\nu z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*MathieuC[\[Nu], 0, z] == Exp[I*\[Nu]*z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.9861942690160291, -0.9067989679250835]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.7892990057566478, 0.4620307840711049]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12.E5 28.12.E5] || [[Item:Q8302|<math>\int_{0}^{\pi}\Mathieume{\nu}@{x}{q}\Mathieume{\nu}@{-x}{q}\diff{x} = \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\Mathieume{\nu}@{x}{q}\Mathieume{\nu}@{-x}{q}\diff{x} = \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sqrt[2]*MathieuC[\[Nu], q, x]*Sqrt[2]*MathieuC[\[Nu], q, - x], {x, 0, Pi}, GenerateConditions->None] == Pi</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.12.E6 28.12.E6] || [[Item:Q8303|<math>\Mathieume{\nu}@{z+\pi}{q} = e^{\pi\iunit\nu}\Mathieume{\nu}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieume{\nu}@{z+\pi}{q} = e^{\pi\iunit\nu}\Mathieume{\nu}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*MathieuC[\[Nu], q, z + Pi] == Exp[Pi*I*\[Nu]]*Sqrt[2]*MathieuC[\[Nu], q, z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-6.370347292395534, -6.192387567232969]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[33.312348543319324, -34.35988503520594]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12.E7 28.12.E7] || [[Item:Q8304|<math>\int_{0}^{\pi}\Mathieume{\nu+2m}@{x}{q}\Mathieume{\nu+2n}@{-x}{q}\diff{x} = 0,</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\Mathieume{\nu+2m}@{x}{q}\Mathieume{\nu+2n}@{-x}{q}\diff{x} = 0,</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sqrt[2]*MathieuC[\[Nu]+ 2*m, q, x]*Sqrt[2]*MathieuC[\[Nu]+ 2*n, q, - x], {x, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Skipped - Unable to analyze test case: Null || - || -
|-
| [https://dlmf.nist.gov/28.12.E8 28.12.E8] || [[Item:Q8305|<math>\Mathieume{-\nu}@{z}{q} = \Mathieume{\nu}@{-z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieume{-\nu}@{z}{q} = \Mathieume{\nu}@{-z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*MathieuC[- \[Nu], q, z] == Sqrt[2]*MathieuC[\[Nu], q, - z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.065655571425399, 0.7817797951498487]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.2535777606795988, -2.2365806414914347]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12.E9 28.12.E9] || [[Item:Q8306|<math>\Mathieume{\nu}@{z}{-q} = e^{\iunit\nu\pi/2}\Mathieume{\nu}@{z-\tfrac{1}{2}\pi}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieume{\nu}@{z}{-q} = e^{\iunit\nu\pi/2}\Mathieume{\nu}@{z-\tfrac{1}{2}\pi}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*MathieuC[\[Nu], - q, z] == Exp[I*\[Nu]*Pi/2]*Sqrt[2]*MathieuC[\[Nu], q, z -Divide[1,2]*Pi]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.2866300784936375, -3.291600297925931]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.4943636299546066, 1.4617312701790142]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12.E10 28.12.E10] || [[Item:Q8307|<math>\conj{\Mathieume{\nu}@{z}{q}} = \Mathieume{\conj{\nu}}@{-\conj{z}}{\conj{q}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\conj{\Mathieume{\nu}@{z}{q}} = \Mathieume{\conj{\nu}}@{-\conj{z}}{\conj{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Conjugate[Sqrt[2]*MathieuC[\[Nu], q, z]] == Sqrt[2]*MathieuC[Conjugate[\[Nu]], Conjugate[q], - Conjugate[z]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [27 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.449796041425081, -1.3521841059420128]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.040892871573185774, -2.224553529597971]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12#Ex1 28.12#Ex1] || [[Item:Q8308|<math>\Mathieume{n}@{z}{q} = \sqrt{2}\Mathieuce{n}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieume{n}@{z}{q} = \sqrt{2}\Mathieuce{n}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*MathieuC[n, q, z] == Sqrt[2]*MathieuC[n, q, z]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 70]
|-
| [https://dlmf.nist.gov/28.12#Ex2 28.12#Ex2] || [[Item:Q8309|<math>\Mathieume{-n}@{z}{q} = -\sqrt{2}\iunit\Mathieuse{n}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieume{-n}@{z}{q} = -\sqrt{2}\iunit\Mathieuse{n}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*MathieuC[- n, q, z] == -Sqrt[2]*I*MathieuS[n, q, z]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [210 / 210]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-2.6058193733626913, 1.2555909202055446]
Test Values: {Rule[n, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.2564301512415783, 3.3896606696156866]
Test Values: {Rule[n, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12.E12 28.12.E12] || [[Item:Q8310|<math>\Mathieuce{\nu}@{z}{q} = \tfrac{1}{2}\left(\Mathieume{\nu}@{z}{q}+\Mathieume{\nu}@{-z}{q}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{\nu}@{z}{q} = \tfrac{1}{2}\left(\Mathieume{\nu}@{z}{q}+\Mathieume{\nu}@{-z}{q}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[\[Nu], q, z] == Divide[1,2]*(Sqrt[2]*MathieuC[\[Nu], q, z]+ Sqrt[2]*MathieuC[\[Nu], q, - z])</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.533819042119813, -0.14668719931348273]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.3603013806161438, -0.6554927908359449]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12.E13 28.12.E13] || [[Item:Q8311|<math>\Mathieuse{\nu}@{z}{q} = -\tfrac{1}{2}\iunit\left(\Mathieume{\nu}@{z}{q}-\Mathieume{\nu}@{-z}{q}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuse{\nu}@{z}{q} = -\tfrac{1}{2}\iunit\left(\Mathieume{\nu}@{z}{q}-\Mathieume{\nu}@{-z}{q}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuS[\[Nu], q, z] == -Divide[1,2]*I*(Sqrt[2]*MathieuC[\[Nu], q, z]- Sqrt[2]*MathieuC[\[Nu], q, - z])</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5117296530175564, 1.1125419914222279]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.502309230543963, -0.7610291346347915]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12.E14 28.12.E14] || [[Item:Q8312|<math>\Mathieuce{\nu}@{z}{q} = \Mathieuce{\nu}@{-z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{\nu}@{z}{q} = \Mathieuce{\nu}@{-z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(nu, q, z) = MathieuCE(nu, q, - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[\[Nu], q, z] == MathieuC[\[Nu], q, - z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 300]
|-
| [https://dlmf.nist.gov/28.12.E14 28.12.E14] || [[Item:Q8312|<math>\Mathieuce{\nu}@{-z}{q} = \Mathieuce{-\nu}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{\nu}@{-z}{q} = \Mathieuce{-\nu}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(nu, q, - z) = MathieuCE(- nu, q, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[\[Nu], q, - z] == MathieuC[- \[Nu], q, z]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.1677458433372196, -0.552801794545088]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.1793065541346438, 1.5815013382691518]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.12.E15 28.12.E15] || [[Item:Q8313|<math>\Mathieuse{\nu}@{z}{q} = -\Mathieuse{\nu}@{-z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuse{\nu}@{z}{q} = -\Mathieuse{\nu}@{-z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuSE(nu, q, z) = - MathieuSE(nu, q, - z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuS[\[Nu], q, z] == - MathieuS[\[Nu], q, - z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 300]
|-
| [https://dlmf.nist.gov/28.12.E15 28.12.E15] || [[Item:Q8313|<math>-\Mathieuse{\nu}@{-z}{q} = -\Mathieuse{-\nu}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\Mathieuse{\nu}@{-z}{q} = -\Mathieuse{-\nu}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- MathieuSE(nu, q, - z) = - MathieuSE(- nu, q, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- MathieuS[\[Nu], q, - z] == - MathieuS[- \[Nu], q, z]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.10223720739540931, 2.122915753327721]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1209568079160426, 0.4323584529351461]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.14.E1 28.14.E1] || [[Item:Q8314|<math>\Mathieume{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)e^{\iunit(\nu+2m)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieume{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)e^{\iunit(\nu+2m)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sqrt[2]*MathieuC[\[Nu], q, z] == Sum[(Subscript[c, 2*m])^\[Nu][q]* Exp[I*(\[Nu]+ 2*m)*z], {m, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.14.E2 28.14.E2] || [[Item:Q8315|<math>\Mathieuce{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)\cos@@{(\nu+2m)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuce{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)\cos@@{(\nu+2m)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuCE(nu, q, z) = sum((c[2*m])^(nu)(q)* cos((nu + 2*m)*z), m = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuC[\[Nu], q, z] == Sum[(Subscript[c, 2*m])^\[Nu][q]* Cos[(\[Nu]+ 2*m)*z], {m, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.14.E3 28.14.E3] || [[Item:Q8316|<math>\Mathieuse{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)\sin@@{(\nu+2m)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Mathieuse{\nu}@{z}{q} = \sum_{m=-\infty}^{\infty}c^{\nu}_{2m}(q)\sin@@{(\nu+2m)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>MathieuSE(nu, q, z) = sum((c[2*m])^(nu)(q)* sin((nu + 2*m)*z), m = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>MathieuS[\[Nu], q, z] == Sum[(Subscript[c, 2*m])^\[Nu][q]* Sin[(\[Nu]+ 2*m)*z], {m, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.14.E4 28.14.E4] || [[Item:Q8317|<math>qc_{2m+2}-\left(a-(\nu+2m)^{2}\right)c_{2m}+qc_{2m-2} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>qc_{2m+2}-\left(a-(\nu+2m)^{2}\right)c_{2m}+qc_{2m-2} = 0</syntaxhighlight> || <math>a = \Mathieueigvallambda{\nu}@{q}, c_{2m} = c_{2m}^{\nu}(q)</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q*c[2*m + 2]-(a -(nu + 2*m)^(2))*c[2*m]+ q*c[2*m - 2] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q*Subscript[c, 2*m + 2]-(a -(\[Nu]+ 2*m)^(2))*Subscript[c, 2*m]+ q*Subscript[c, 2*m - 2] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.14.E5 28.14.E5] || [[Item:Q8318|<math>\sum_{m=-\infty}^{\infty}\left(c_{2m}^{\nu}(q)\right)^{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{m=-\infty}^{\infty}\left(c_{2m}^{\nu}(q)\right)^{2} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(((c[2*m])^(nu)(q))^(2), m = - infinity..infinity) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[((Subscript[c, 2*m])^\[Nu][q])^(2), {m, - Infinity, Infinity}, GenerateConditions->None] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.14.E7 28.14.E7] || [[Item:Q8320|<math>c_{-2m}^{-\nu}(q) = c_{2m}^{\nu}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{-2m}^{-\nu}(q) = c_{2m}^{\nu}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(c[- 2*m])^(- nu)(q) = (c[2*m])^(nu)(q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[c, - 2*m])^(- \[Nu])[q] == (Subscript[c, 2*m])^\[Nu][q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.14.E8 28.14.E8] || [[Item:Q8321|<math>c_{2m}^{\nu}(-q) = (-1)^{m}c_{2m}^{\nu}(q)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{2m}^{\nu}(-q) = (-1)^{m}c_{2m}^{\nu}(q)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(c[2*m])^(nu)(- q) = (- 1)^(m)* (c[2*m])^(nu)(q)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[c, 2*m])^\[Nu][- q] == (- 1)^(m)* (Subscript[c, 2*m])^\[Nu][q]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.14#Ex1 28.14#Ex1] || [[Item:Q8322|<math>c_{0}^{\nu}(0) = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0}^{\nu}(0) = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(c[0])^(nu)(0) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[c, 0])^\[Nu][0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.14#Ex2 28.14#Ex2] || [[Item:Q8323|<math>c_{2m}^{\nu}(0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{2m}^{\nu}(0) = 0</syntaxhighlight> || <math>m \neq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(c[2*m])^(nu)(0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[c, 2*m])^\[Nu][0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.19.E4 28.19.E4] || [[Item:Q8332|<math>e^{\iunit\nu z} = \sum_{n=-\infty}^{\infty}c^{\nu+2n}_{-2n}(q)\Mathieume{\nu+2n}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{\iunit\nu z} = \sum_{n=-\infty}^{\infty}c^{\nu+2n}_{-2n}(q)\Mathieume{\nu+2n}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*\[Nu]*z] == Sum[(Subscript[c, - 2*n])^(\[Nu]+ 2*n)[q]* Sqrt[2]*MathieuC[\[Nu]+ 2*n, q, z], {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.22.E5 28.22.E5] || [[Item:Q8370|<math>g_{\mathit{e},2m}(h) = (-1)^{m}\sqrt{\dfrac{2}{\pi}}\dfrac{\Mathieuce{2m}@{\frac{1}{2}\pi}{h^{2}}}{A_{0}^{2m}(h^{2})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>g_{\mathit{e},2m}(h) = (-1)^{m}\sqrt{\dfrac{2}{\pi}}\dfrac{\Mathieuce{2m}@{\frac{1}{2}\pi}{h^{2}}}{A_{0}^{2m}(h^{2})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>g[e , 2*m](h) = (- 1)^(m)*sqrt((2)/(Pi))*(MathieuCE(2*m, (h)^(2), (1)/(2)*Pi))/((A[0])^(2*m)((h)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[g, e , 2*m][h] == (- 1)^(m)*Sqrt[Divide[2,Pi]]*Divide[MathieuC[2*m, (h)^(2), Divide[1,2]*Pi],(Subscript[A, 0])^(2*m)[(h)^(2)]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[0.42295231653869036, 0.41961671574834936], Power[A, -1]]]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 1], Rule[Subscript[A, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, E, Times[2, m]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-0.38839890891671613, -0.3454183210952864], Power[A, -1]]]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 2], Rule[Subscript[A, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, E, Times[2, m]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.22.E6 28.22.E6] || [[Item:Q8371|<math>g_{\mathit{e},2m+1}(h) = (-1)^{m+1}\sqrt{\frac{2}{\pi}}\dfrac{\Mathieuce{2m+1}'@{\frac{1}{2}\pi}{h^{2}}}{hA_{1}^{2m+1}(h^{2})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>g_{\mathit{e},2m+1}(h) = (-1)^{m+1}\sqrt{\frac{2}{\pi}}\dfrac{\Mathieuce{2m+1}'@{\frac{1}{2}\pi}{h^{2}}}{hA_{1}^{2m+1}(h^{2})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>g[e , 2*m + 1](h) = (- 1)^(m + 1)*sqrt((2)/(Pi))*(subs( temp=(1)/(2)*Pi, diff( MathieuCE(2*m + 1, (h)^(2), temp), temp$(1) ) ))/((hA[1])^(2*m + 1)((h)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[g, e , 2*m + 1][h] == (- 1)^(m + 1)*Sqrt[Divide[2,Pi]]*Divide[D[MathieuC[2*m + 1, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi,(Subscript[hA, 1])^(2*m + 1)[(h)^(2)]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-0.2975776534545682, -0.6256781760348913], Power[A, -1]]]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 1], Rule[Subscript[A, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, E, Plus[1, Times[2, m]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-0.42963849355864525, 0.8495253193240367], Power[A, -1]]]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 2], Rule[Subscript[A, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, E, Plus[1, Times[2, m]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.22.E7 28.22.E7] || [[Item:Q8372|<math>g_{\mathit{o},2m+1}(h) = (-1)^{m}\sqrt{\dfrac{2}{\pi}}\dfrac{\Mathieuse{2m+1}@{\frac{1}{2}\pi}{h^{2}}}{hB_{1}^{2m+1}(h^{2})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>g_{\mathit{o},2m+1}(h) = (-1)^{m}\sqrt{\dfrac{2}{\pi}}\dfrac{\Mathieuse{2m+1}@{\frac{1}{2}\pi}{h^{2}}}{hB_{1}^{2m+1}(h^{2})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>g[o , 2*m + 1](h) = (- 1)^(m)*sqrt((2)/(Pi))*(MathieuSE(2*m + 1, (h)^(2), (1)/(2)*Pi))/((hB[1])^(2*m + 1)((h)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[g, o , 2*m + 1][h] == (- 1)^(m)*Sqrt[Divide[2,Pi]]*Divide[MathieuS[2*m + 1, (h)^(2), Divide[1,2]*Pi],(Subscript[hB, 1])^(2*m + 1)[(h)^(2)]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-0.32036211571699924, -0.11607109445443671], Power[B, -1]]]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 1], Rule[o, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[B, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, o, Plus[1, Times[2, m]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-0.1322357993555902, 0.30696697344841817], Power[B, -1]]]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 2], Rule[o, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[B, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, o, Plus[1, Times[2, m]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.22.E8 28.22.E8] || [[Item:Q8373|<math>g_{\mathit{o},2m+2}(h) = (-1)^{m+1}\sqrt{\dfrac{2}{\pi}}\dfrac{\Mathieuse{2m+2}'@{\frac{1}{2}\pi}{h^{2}}}{h^{2}B_{2}^{2m+2}(h^{2})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>g_{\mathit{o},2m+2}(h) = (-1)^{m+1}\sqrt{\dfrac{2}{\pi}}\dfrac{\Mathieuse{2m+2}'@{\frac{1}{2}\pi}{h^{2}}}{h^{2}B_{2}^{2m+2}(h^{2})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>g[o , 2*m + 2](h) = (- 1)^(m + 1)*sqrt((2)/(Pi))*(subs( temp=(1)/(2)*Pi, diff( MathieuSE(2*m + 2, (h)^(2), temp), temp$(1) ) ))/((h)^(2)* (B[2])^(2*m + 2)((h)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[g, o , 2*m + 2][h] == (- 1)^(m + 1)*Sqrt[Divide[2,Pi]]*Divide[D[MathieuS[2*m + 2, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi,(h)^(2)* (Subscript[B, 2])^(2*m + 2)[(h)^(2)]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[0.09053953879094334, 2.773543957850464], Power[B, -1]]]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 1], Rule[o, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[B, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, o, Plus[2, Times[2, m]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-0.7797636104550828, -1.7837750479423518], Power[B, -1]]]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 2], Rule[o, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[B, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, o, Plus[2, Times[2, m]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.25.E3 28.25.E3] || [[Item:Q8414|<math>(m+1)D^{+}_{m+1}+{\left((m+\tfrac{1}{2})^{2}+(m+\tfrac{1}{4})8\iunit h+2h^{2}-a\right)D^{+}_{m}}+(m-\tfrac{1}{2})\left(8\iunit hm\right)D_{m-1}^{+} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(m+1)D^{+}_{m+1}+{\left((m+\tfrac{1}{2})^{2}+(m+\tfrac{1}{4})8\iunit h+2h^{2}-a\right)D^{+}_{m}}+(m-\tfrac{1}{2})\left(8\iunit hm\right)D_{m-1}^{+} = 0</syntaxhighlight> || <math>m \geq 0</math> || <syntaxhighlight lang=mathematica>(m + 1)*(D[m + 1])^(+)+((m +(1)/(2))^(2)+(m +(1)/(4))*8*I*h + 2*(h)^(2)- a)*(D[m])^(+)+(m -(1)/(2))*(8*I*h*m)*(D[m - 1])^(+) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(m + 1)*(Subscript[D, m + 1])^(+)+((m +Divide[1,2])^(2)+(m +Divide[1,4])*8*I*h + 2*(h)^(2)- a)*(Subscript[D, m])^(+)+(m -Divide[1,2])*(8*I*h*m)*(Subscript[D, m - 1])^(+) == 0</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/28.25.E3 28.25.E3] || [[Item:Q8414|<math>(m+1)D^{-}_{m+1}+{\left((m+\tfrac{1}{2})^{2}-(m+\tfrac{1}{4})8\iunit h+2h^{2}-a\right)D^{-}_{m}}-(m-\tfrac{1}{2})\left(8\iunit hm\right)D_{m-1}^{-} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(m+1)D^{-}_{m+1}+{\left((m+\tfrac{1}{2})^{2}-(m+\tfrac{1}{4})8\iunit h+2h^{2}-a\right)D^{-}_{m}}-(m-\tfrac{1}{2})\left(8\iunit hm\right)D_{m-1}^{-} = 0</syntaxhighlight> || <math>m \geq 0</math> || <syntaxhighlight lang=mathematica>(m + 1)*(D[m + 1])^(-)+((m +(1)/(2))^(2)-(m +(1)/(4))*8*I*h + 2*(h)^(2)- a)*(D[m])^(-)-(m -(1)/(2))*(8*I*h*m)*(D[m - 1])^(-) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(m + 1)*(Subscript[D, m + 1])^(-)+((m +Divide[1,2])^(2)-(m +Divide[1,4])*8*I*h + 2*(h)^(2)- a)*(Subscript[D, m])^(-)-(m -Divide[1,2])*(8*I*h*m)*(Subscript[D, m - 1])^(-) == 0</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/28.26.E3 28.26.E3] || [[Item:Q8419|<math>\phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi = 2*h*sinh(z)-(m +(1)/(2))*arctan(sinh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi] == 2*h*Sinh[z]-(m +Divide[1,2])*ArcTan[Sinh[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.309060595-.9846819085*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.148731429-.6275515075*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.3090605953108105, -0.9846819068983852]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.1487314296378672, -0.6275515058300114]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.28.E1 28.28.E1] || [[Item:Q8422|<math>w = \cosh@@{z}\cos@@{t}\cos@@{\alpha}+\sinh@@{z}\sin@@{t}\sin@@{\alpha}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \cosh@@{z}\cos@@{t}\cos@@{\alpha}+\sinh@@{z}\sin@@{t}\sin@@{\alpha}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = cosh(z)*cos(t)*cos(alpha)+ sinh(z)*sin(t)*sin(alpha)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == Cosh[z]*Cos[t]*Cos[\[Alpha]]+ Sinh[z]*Sin[t]*Sin[\[Alpha]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [299 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.714222282+1.165028049*I
Test Values: {alpha = 3/2, t = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5264627339+1.356668447*I
Test Values: {alpha = 3/2, t = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [298 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.7142222818783819, 1.165028048919159]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.2004296775262544, 0.7916410797173274]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.28.E10 28.28.E10] || [[Item:Q8434|<math>0 < \phase@{h(\cosh@@{z}+ 1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>0 < \phase@{h(\cosh@@{z}+ 1)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>0 < argument(h*(cosh(z)+ 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>0 < Arg[h*(Cosh[z]+ 1)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0. < -.8396703302
Test Values: {h = 1/2-1/2*I*3^(1/2), z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0. < -1.272675688
Test Values: {h = 1/2-1/2*I*3^(1/2), z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.28.E10 28.28.E10] || [[Item:Q8434|<math>0 < \phase@{h(\cosh@@{z}- 1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>0 < \phase@{h(\cosh@@{z}- 1)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>0 < argument(h*(cosh(z)- 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>0 < Arg[h*(Cosh[z]- 1)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0. < -1.643566335
Test Values: {h = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 0. < -1.643566335
Test Values: {h = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.28.E10 28.28.E10] || [[Item:Q8434|<math>\phase@{h(\cosh@@{z}+ 1)} < \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{h(\cosh@@{z}+ 1)} < \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(h*(cosh(z)+ 1)) < Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[h*(Cosh[z]+ 1)] < Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[h, -1.5], Rule[z, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[h, -1.5], Rule[z, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.28.E10 28.28.E10] || [[Item:Q8434|<math>\phase@{h(\cosh@@{z}- 1)} < \pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phase@{h(\cosh@@{z}- 1)} < \pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>argument(h*(cosh(z)- 1)) < Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Arg[h*(Cosh[z]- 1)] < Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.141592654 < 3.141592654
Test Values: {h = -3/2, z = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[h, -1.5], Rule[z, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[h, -1.5], Rule[z, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.28#Ex4 28.28#Ex4] || [[Item:Q8442|<math>R(z,t) = \left(\tfrac{1}{2}(\cosh@{2z}+\cos@{2t})\right)^{\ifrac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>R(z,t) = \left(\tfrac{1}{2}(\cosh@{2z}+\cos@{2t})\right)^{\ifrac{1}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>R(z , t) = ((1)/(2)*(cosh(2*z)+ cos(2*t)))^((1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>R[z , t] == (Divide[1,2]*(Cosh[2*z]+ Cos[2*t]))^(Divide[1,2])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: (.8660254040+.5000000000*I)*(.8660254040+.5000000000*I, -1.500000000)-.8604472605-.6693200135*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, t = -3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: (.8660254040+.5000000000*I)*(-.5000000000+.8660254040*I, -1.500000000)-.3385916178+.8564557052*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, t = -3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Error
|-
| [https://dlmf.nist.gov/28.28#Ex5 28.28#Ex5] || [[Item:Q8443|<math>R(z,0) = \cosh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>R(z,0) = \cosh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>R(z , 0) = cosh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>R[z , 0] == Cosh[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: (.8660254040+.5000000000*I)*(.8660254040+.5000000000*I, 0.)-1.227765517-.4690753764*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: (.8660254040+.5000000000*I)*(-.5000000000+.8660254040*I, 0.)-.7305430189+.3969495503*I
Test Values: {R = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Error
|-
| [https://dlmf.nist.gov/28.28#Ex6 28.28#Ex6] || [[Item:Q8444|<math>e^{2\iunit\phi} = \dfrac{\cosh@{z+\iunit t}}{\cosh@{z-\iunit t}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{2\iunit\phi} = \dfrac{\cosh@{z+\iunit t}}{\cosh@{z-\iunit t}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(2*I*phi) = (cosh(z + I*t))/(cosh(z - I*t))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[2*I*\[Phi]] == Divide[Cosh[z + I*t],Cosh[z - I*t]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9781641542+.5339822543*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, t = -3/2, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.021212458+.2569827752*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, t = -3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.978164154574313, 0.5339822543847044]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1328205399920523, 0.022001382090719362]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.28#Ex7 28.28#Ex7] || [[Item:Q8445|<math>\phi(z,0) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\phi(z,0) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">phi(z , 0) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Phi][z , 0] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.28.E28 28.28.E28] || [[Item:Q8455|<math>\alpha^{(1)}_{\nu,m} = \dfrac{1}{2\pi}\int_{0}^{2\pi}\sin@@{t}\Mathieume{\nu}@{t}{h^{2}}\Mathieume{-\nu-2m-1}@{t}{h^{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\alpha^{(1)}_{\nu,m} = \dfrac{1}{2\pi}\int_{0}^{2\pi}\sin@@{t}\Mathieume{\nu}@{t}{h^{2}}\Mathieume{-\nu-2m-1}@{t}{h^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Subscript[\[Alpha], \[Nu], m])^(1) == Divide[1,2*Pi]*Integrate[Sin[t]*Sqrt[2]*MathieuC[\[Nu], (h)^(2), t]*Sqrt[2]*MathieuC[- \[Nu]- 2*m - 1, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/28.28.E41 28.28.E41] || [[Item:Q8472|<math>\dfrac{\cosh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@@{t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{0}@{n}{m}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\dfrac{\cosh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@@{t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{0}@{n}{m}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cosh(z))/((Pi)^(2))*int((sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p + 1)* I*h*((1)/(2*Pi)*int(sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cosh[z],(Pi)^(2)]*Integrate[Divide[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p + 1)* I*h*(Divide[1,2*Pi]*Integrate[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/28.28.E42 28.28.E42] || [[Item:Q8473|<math>\dfrac{\sinh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\cos@@{t}\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{1}@{n}{m}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\dfrac{\sinh@@{z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\cos@@{t}\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit h\widehat{\beta}_{n,m}\radMathieuDsc{1}@{n}{m}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sinh(z))/((Pi)^(2))*int((cos(t)*subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p)* I*h*((1)/(2*Pi)*int(sin(t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sinh[z],(Pi)^(2)]*Integrate[Divide[Cos[t]*(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p)* I*h*(Divide[1,2*Pi]*Integrate[Sin[t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/28.28.E44 28.28.E44] || [[Item:Q8475|<math>\dfrac{1}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@{2t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{0}@{n}{m}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\dfrac{1}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin@{2t}\Mathieuse{n}@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{0}@{n}{m}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/((Pi)^(2))*int((sin(2*t)*MathieuSE(n, (h)^(2), t)*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p)* I*((1)/(2*Pi)*int(subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,(Pi)^(2)]*Integrate[Divide[Sin[2*t]*MathieuS[n, (h)^(2), t]*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p)* I*(Divide[1,2*Pi]*Integrate[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/28.28.E45 28.28.E45] || [[Item:Q8476|<math>\dfrac{\sinh@{2z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{1}@{n}{m}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\dfrac{\sinh@{2z}}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\Mathieuse{n}'@{t}{h^{2}}\Mathieuce{m}@{t}{h^{2}}}{\sinh^{2}@@{z}+\sin^{2}@@{t}}\diff{t} = (-1)^{p+1}\iunit\widehat{\gamma}_{n,m}\radMathieuDsc{1}@{n}{m}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(sinh(2*z))/((Pi)^(2))*int((subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t))/((sinh(z))^(2)+ (sin(t))^(2)), t = 0..2*Pi) = (- 1)^(p + 1)* I*((1)/(2*Pi)*int(subs( temp=t, diff( MathieuSE(n, (h)^(2), temp), temp$(1) ) )*MathieuCE(m, (h)^(2), t), t = 0..2*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sinh[2*z],(Pi)^(2)]*Integrate[Divide[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t],(Sinh[z])^(2)+ (Sin[t])^(2)], {t, 0, 2*Pi}, GenerateConditions->None] == (- 1)^(p + 1)* I*(Divide[1,2*Pi]*Integrate[(D[MathieuS[n, (h)^(2), temp], {temp, 1}]/.temp-> t)*MathieuC[m, (h)^(2), t], {t, 0, 2*Pi}, GenerateConditions->None])</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.29.E2 28.29.E2] || [[Item:Q8482|<math>Q(z+\pi) = Q(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>Q(z+\pi) = Q(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Q(z + Pi) = Q(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Q[z + Pi] == Q[z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.29.E3 28.29.E3] || [[Item:Q8483|<math>\int_{0}^{\pi}Q(z)\diff{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}Q(z)\diff{z} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(Q(z), z = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Q[z], {z, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 4.273664071+2.467401101*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.467401101+4.273664071*I
Test Values: {Q = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.2736640683230425, 2.467401100272339]
Test Values: {Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.4674011002723386, 4.2736640683230425]
Test Values: {Rule[Q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.29.E6 28.29.E6] || [[Item:Q8486|<math>-1 < \realpart@@{\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-1 < \realpart@@{\nu}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- 1 < Re(nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- 1 < Re[\[Nu]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1. < -1.500000000
Test Values: {nu = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1. < -2.
Test Values: {nu = -2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[ν, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[ν, -2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/28.29.E6 28.29.E6] || [[Item:Q8486|<math>\realpart@@{\nu} \leq 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\realpart@@{\nu} \leq 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Re(nu) <= 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Re[\[Nu]] <= 1</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.500000000 <= 1.
Test Values: {nu = 3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2. <= 1.
Test Values: {nu = 2}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[ν, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[ν, 2]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/28.29.E7 28.29.E7] || [[Item:Q8487|<math>w(z+\pi) = e^{\pi\iunit\nu}w(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(z+\pi) = e^{\pi\iunit\nu}w(z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(z + Pi) = exp(Pi*I*nu)*w(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[z + Pi] == Exp[Pi*I*\[Nu]]*w[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.389122976+2.558671223*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.732824151+2.239220255*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.3891229743891893, 2.5586712226918134]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.163689701656905, 2.469736091084983]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.29.E11 28.29.E11] || [[Item:Q8491|<math>w(z+\pi) = (-1)^{\nu}w(z)+cP(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w(z+\pi) = (-1)^{\nu}w(z)+cP(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w(z + Pi) = (- 1)^(nu)* w(z)+ cP(z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w[z + Pi] == (- 1)^\[Nu]* w[z]+ cP[z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.29.E13 28.29.E13] || [[Item:Q8493|<math>w(z+\pi)+w(z-\pi) = 2\cos@{\pi\nu}w(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(z+\pi)+w(z-\pi) = 2\cos@{\pi\nu}w(z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(z + Pi)+ w(z - Pi) = 2*cos(Pi*nu)*w(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[z + Pi]+ w[z - Pi] == 2*Cos[Pi*\[Nu]]*w[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.661616693+6.639028674*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.639028674+1.661616692*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [240 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.6616166873386105, 6.63902867151764]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[14.098728614058, -5.830503683799378]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.29.E18 28.29.E18] || [[Item:Q8498|<math>\lambda_{0} < \mu_{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lambda_{0} < \mu_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">lambda[0](<)*mu[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Lambda], 0][<]*Subscript[\[Mu], 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.30.E2 28.30.E2] || [[Item:Q8507|<math>\frac{1}{2\pi}\int_{0}^{2\pi}w_{m}(x)w_{n}(x)\diff{x} = \Kroneckerdelta{m}{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int_{0}^{2\pi}w_{m}(x)w_{n}(x)\diff{x} = \Kroneckerdelta{m}{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int(w[m](x)* w[n](x), x = 0..2*Pi) = KroneckerDelta[m, n]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Subscript[w, m][x]* Subscript[w, n][x], {x, 0, 2*Pi}, GenerateConditions->None] == KroneckerDelta[m, n]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 5.579736275+11.39643752*I
Test Values: {w[m] = 1/2*3^(1/2)+1/2*I, w[n] = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.579736275+11.39643752*I
Test Values: {w[m] = 1/2*3^(1/2)+1/2*I, w[n] = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[5.579736267392906, 11.396437515528111]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[Subscript[w, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[6.579736267392906, 11.396437515528111]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[Subscript[w, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex1 28.31#Ex1] || [[Item:Q8511|<math>\xi^{2} = -4k^{2}c^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\xi^{2} = -4k^{2}c^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(xi)^(2) = - 4*(k)^(2)* (c)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Xi]^(2) == - 4*(k)^(2)* (c)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex2 28.31#Ex2] || [[Item:Q8512|<math>A = \eta-\tfrac{1}{8}\xi^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A = \eta-\tfrac{1}{8}\xi^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A = eta -(1)/(8)*(xi)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A == \[Eta]-Divide[1,8]*\[Xi]^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex3 28.31#Ex3] || [[Item:Q8513|<math>B = -(p+1)\xi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>B = -(p+1)\xi</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">B = -(p + 1)*xi</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">B == -(p + 1)*\[Xi]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.31#Ex4 28.31#Ex4] || [[Item:Q8514|<math>W(z) = w(z)\exp@{-\tfrac{1}{4}\xi\cos@{2z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>W(z) = w(z)\exp@{-\tfrac{1}{4}\xi\cos@{2z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>W(z) = w(z)* exp(-(1)/(4)*xi*cos(2*z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>W[z] == w[z]* Exp[-Divide[1,4]*\[Xi]*Cos[2*z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2817275679-.201842736e-1*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5394015055-.3903737220*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.2817275677812313, -0.02018427332482242]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.06489049435577782, 0.2500000224743827]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.31.E4 28.31.E4] || [[Item:Q8516|<math>w_{\mathit{e},s}(z) = \sum_{\ell=0}^{\infty}A_{2\ell+s}\cos@@{(2\ell+s)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w_{\mathit{e},s}(z) = \sum_{\ell=0}^{\infty}A_{2\ell+s}\cos@@{(2\ell+s)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w[e , s](z) = sum(A[2*ell + s]*cos((2*ell + s)*z), ell = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[w, e , s][z] == Sum[Subscript[A, 2*\[ScriptL]+ s]*Cos[(2*\[ScriptL]+ s)*z], {\[ScriptL], 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|-
| [https://dlmf.nist.gov/28.31.E5 28.31.E5] || [[Item:Q8517|<math>w_{\mathit{o},s}(z) = \sum_{\ell=0}^{\infty}B_{2\ell+s}\sin@@{(2\ell+s)z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w_{\mathit{o},s}(z) = \sum_{\ell=0}^{\infty}B_{2\ell+s}\sin@@{(2\ell+s)z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w[o , s](z) = sum(B[2*ell + s]*sin((2*ell + s)*z), ell = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[w, o , s][z] == Sum[Subscript[B, 2*\[ScriptL]+ s]*Sin[(2*\[ScriptL]+ s)*z], {\[ScriptL], 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Skip - No test values generated
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex5 28.31#Ex5] || [[Item:Q8518|<math>-2\eta A_{0}+(2+p)\xi A_{2} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>-2\eta A_{0}+(2+p)\xi A_{2} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">- 2*eta*A[0]+(2 + p)*xi*A[2] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">- 2*\[Eta]*Subscript[A, 0]+(2 + p)*\[Xi]*Subscript[A, 2] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex6 28.31#Ex6] || [[Item:Q8519|<math>p\xi A_{0}+(4-\eta)A_{2}+\left(\tfrac{1}{2}p+2\right)\xi A_{4} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p\xi A_{0}+(4-\eta)A_{2}+\left(\tfrac{1}{2}p+2\right)\xi A_{4} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p*xi*A[0]+(4 - eta)*A[2]+((1)/(2)*p + 2)*xi*A[4] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p*\[Xi]*Subscript[A, 0]+(4 - \[Eta])*Subscript[A, 2]+(Divide[1,2]*p + 2)*\[Xi]*Subscript[A, 4] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex7 28.31#Ex7] || [[Item:Q8520|<math>(\tfrac{1}{2}p-\ell+1)\xi A_{2\ell-2}+\left(4\ell^{2}-\eta\right)A_{2\ell}+(\tfrac{1}{2}p+\ell+1)\xi A_{2\ell+2} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(\tfrac{1}{2}p-\ell+1)\xi A_{2\ell-2}+\left(4\ell^{2}-\eta\right)A_{2\ell}+(\tfrac{1}{2}p+\ell+1)\xi A_{2\ell+2} = 0</syntaxhighlight> || <math>\ell \geq 2</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*p - ell + 1)*xi*A[2*ell - 2]+(4*(ell)^(2)- eta)*A[2*ell]+((1)/(2)*p + ell + 1)*xi*A[2*ell + 2] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*p - \[ScriptL]+ 1)*\[Xi]*Subscript[A, 2*\[ScriptL]- 2]+(4*\[ScriptL]^(2)- \[Eta])*Subscript[A, 2*\[ScriptL]]+(Divide[1,2]*p + \[ScriptL]+ 1)*\[Xi]*Subscript[A, 2*\[ScriptL]+ 2] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex8 28.31#Ex8] || [[Item:Q8521|<math>\left(1-\eta+\left(\tfrac{1}{2}p+\tfrac{1}{2}\right)\xi\right)A_{1}+\left(\tfrac{1}{2}p+\tfrac{3}{2}\right)\xi A_{3} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\eta+\left(\tfrac{1}{2}p+\tfrac{1}{2}\right)\xi\right)A_{1}+\left(\tfrac{1}{2}p+\tfrac{3}{2}\right)\xi A_{3} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 - eta +((1)/(2)*p +(1)/(2))*xi)*A[1]+((1)/(2)*p +(3)/(2))*xi*A[3] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 - \[Eta]+(Divide[1,2]*p +Divide[1,2])*\[Xi])*Subscript[A, 1]+(Divide[1,2]*p +Divide[3,2])*\[Xi]*Subscript[A, 3] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex9 28.31#Ex9] || [[Item:Q8522|<math>(\tfrac{1}{2}p-\ell+\tfrac{1}{2})\xi A_{2\ell-1}+\left((2\ell+1)^{2}-\eta\right)A_{2\ell+1}+(\tfrac{1}{2}p+\ell+\tfrac{3}{2})\xi A_{2\ell+3} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(\tfrac{1}{2}p-\ell+\tfrac{1}{2})\xi A_{2\ell-1}+\left((2\ell+1)^{2}-\eta\right)A_{2\ell+1}+(\tfrac{1}{2}p+\ell+\tfrac{3}{2})\xi A_{2\ell+3} = 0</syntaxhighlight> || <math>\ell \geq 1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*p - ell +(1)/(2))*xi*A[2*ell - 1]+((2*ell + 1)^(2)- eta)*A[2*ell + 1]+((1)/(2)*p + ell +(3)/(2))*xi*A[2*ell + 3] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*p - \[ScriptL]+Divide[1,2])*\[Xi]*Subscript[A, 2*\[ScriptL]- 1]+((2*\[ScriptL]+ 1)^(2)- \[Eta])*Subscript[A, 2*\[ScriptL]+ 1]+(Divide[1,2]*p + \[ScriptL]+Divide[3,2])*\[Xi]*Subscript[A, 2*\[ScriptL]+ 3] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex10 28.31#Ex10] || [[Item:Q8523|<math>\left(1-\eta-\left(\tfrac{1}{2}p+\tfrac{1}{2}\right)\xi\right)B_{1}+\left(\tfrac{1}{2}p+\tfrac{3}{2}\right)\xi B_{3} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(1-\eta-\left(\tfrac{1}{2}p+\tfrac{1}{2}\right)\xi\right)B_{1}+\left(\tfrac{1}{2}p+\tfrac{3}{2}\right)\xi B_{3} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 - eta -((1)/(2)*p +(1)/(2))*xi)*B[1]+((1)/(2)*p +(3)/(2))*xi*B[3] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(1 - \[Eta]-(Divide[1,2]*p +Divide[1,2])*\[Xi])*Subscript[B, 1]+(Divide[1,2]*p +Divide[3,2])*\[Xi]*Subscript[B, 3] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex11 28.31#Ex11] || [[Item:Q8524|<math>(\tfrac{1}{2}p-\ell+\tfrac{1}{2})\xi B_{2\ell-1}+\left((2\ell+1)^{2}-\eta\right)B_{2\ell+1}+(\tfrac{1}{2}p+\ell+\tfrac{3}{2})\xi B_{2\ell+3} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(\tfrac{1}{2}p-\ell+\tfrac{1}{2})\xi B_{2\ell-1}+\left((2\ell+1)^{2}-\eta\right)B_{2\ell+1}+(\tfrac{1}{2}p+\ell+\tfrac{3}{2})\xi B_{2\ell+3} = 0</syntaxhighlight> || <math>\ell \geq 1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*p - ell +(1)/(2))*xi*B[2*ell - 1]+((2*ell + 1)^(2)- eta)*B[2*ell + 1]+((1)/(2)*p + ell +(3)/(2))*xi*B[2*ell + 3] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*p - \[ScriptL]+Divide[1,2])*\[Xi]*Subscript[B, 2*\[ScriptL]- 1]+((2*\[ScriptL]+ 1)^(2)- \[Eta])*Subscript[B, 2*\[ScriptL]+ 1]+(Divide[1,2]*p + \[ScriptL]+Divide[3,2])*\[Xi]*Subscript[B, 2*\[ScriptL]+ 3] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex12 28.31#Ex12] || [[Item:Q8525|<math>(4-\eta)B_{2}+\left(\tfrac{1}{2}p+2\right)\xi B_{4} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(4-\eta)B_{2}+\left(\tfrac{1}{2}p+2\right)\xi B_{4} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(4 - eta)*B[2]+((1)/(2)*p + 2)*xi*B[4] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(4 - \[Eta])*Subscript[B, 2]+(Divide[1,2]*p + 2)*\[Xi]*Subscript[B, 4] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex13 28.31#Ex13] || [[Item:Q8526|<math>(\tfrac{1}{2}p-\ell+1)\xi B_{2\ell-2}+(4\ell^{2}-\eta)B_{2\ell}+(\tfrac{1}{2}p+\ell+1)\xi B_{2\ell+2} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(\tfrac{1}{2}p-\ell+1)\xi B_{2\ell-2}+(4\ell^{2}-\eta)B_{2\ell}+(\tfrac{1}{2}p+\ell+1)\xi B_{2\ell+2} = 0</syntaxhighlight> || <math>\ell \geq 2</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1)/(2)*p - ell + 1)*xi*B[2*ell - 2]+(4*(ell)^(2)- eta)*B[2*ell]+((1)/(2)*p + ell + 1)*xi*B[2*ell + 2] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1,2]*p - \[ScriptL]+ 1)*\[Xi]*Subscript[B, 2*\[ScriptL]- 2]+(4*\[ScriptL]^(2)- \[Eta])*Subscript[B, 2*\[ScriptL]]+(Divide[1,2]*p + \[ScriptL]+ 1)*\[Xi]*Subscript[B, 2*\[ScriptL]+ 2] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.31.E12 28.31.E12] || [[Item:Q8529|<math>\dfrac{1}{\pi}\int_{0}^{2\pi}\left(C_{p}^{m}(x,\xi)\right)^{2}\diff{x} = \dfrac{1}{\pi}\int_{0}^{2\pi}\left(S_{p}^{m}(x,\xi)\right)^{2}\diff{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\dfrac{1}{\pi}\int_{0}^{2\pi}\left(C_{p}^{m}(x,\xi)\right)^{2}\diff{x} = \dfrac{1}{\pi}\int_{0}^{2\pi}\left(S_{p}^{m}(x,\xi)\right)^{2}\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(Pi)*int(((C[p])^(m)(x , xi))^(2), x = 0..2*Pi) = (1)/(Pi)*int(((S[p])^(m)(x , xi))^(2), x = 0..2*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi]*Integrate[((Subscript[C, p])^(m)[x , \[Xi]])^(2), {x, 0, 2*Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[((Subscript[S, p])^(m)[x , \[Xi]])^(2), {x, 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/28.31.E12 28.31.E12] || [[Item:Q8529|<math>\dfrac{1}{\pi}\int_{0}^{2\pi}\left(S_{p}^{m}(x,\xi)\right)^{2}\diff{x} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\dfrac{1}{\pi}\int_{0}^{2\pi}\left(S_{p}^{m}(x,\xi)\right)^{2}\diff{x} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(Pi)*int(((S[p])^(m)(x , xi))^(2), x = 0..2*Pi) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi]*Integrate[((Subscript[S, p])^(m)[x , \[Xi]])^(2), {x, 0, 2*Pi}, GenerateConditions->None] == 1</syntaxhighlight> || Failure || Failure || Error || Error
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex22 28.31#Ex22] || [[Item:Q8541|<math>\mathit{hc}_{2n}^{2m}(z,-\xi) = (-1)^{m}\mathit{hc}_{2n}^{2m}(\tfrac{1}{2}\pi-z,\xi)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathit{hc}_{2n}^{2m}(z,-\xi) = (-1)^{m}\mathit{hc}_{2n}^{2m}(\tfrac{1}{2}\pi-z,\xi)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(hc[2*n])^(2*m)(z , - xi) = (- 1)^(m)* (hc[2*n])^(2*m)((1)/(2)*Pi - z , xi)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[hc, 2*n])^(2*m)[z , - \[Xi]] == (- 1)^(m)* (Subscript[hc, 2*n])^(2*m)[Divide[1,2]*Pi - z , \[Xi]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex23 28.31#Ex23] || [[Item:Q8542|<math>\mathit{hc}_{2n+1}^{2m+1}(z,-\xi) = (-1)^{m}\mathit{hs}_{2n+1}^{2m+1}(\tfrac{1}{2}\pi-z,\xi)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathit{hc}_{2n+1}^{2m+1}(z,-\xi) = (-1)^{m}\mathit{hs}_{2n+1}^{2m+1}(\tfrac{1}{2}\pi-z,\xi)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(hc[2*n + 1])^(2*m + 1)(z , - xi) = (- 1)^(m)* (hs[2*n + 1])^(2*m + 1)((1)/(2)*Pi - z , xi)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[hc, 2*n + 1])^(2*m + 1)[z , - \[Xi]] == (- 1)^(m)* (Subscript[hs, 2*n + 1])^(2*m + 1)[Divide[1,2]*Pi - z , \[Xi]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex24 28.31#Ex24] || [[Item:Q8543|<math>\mathit{hs}_{2n+1}^{2m+1}(z,-\xi) = (-1)^{m}\mathit{hc}_{2n+1}^{2m+1}(\tfrac{1}{2}\pi-z,\xi)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathit{hs}_{2n+1}^{2m+1}(z,-\xi) = (-1)^{m}\mathit{hc}_{2n+1}^{2m+1}(\tfrac{1}{2}\pi-z,\xi)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(hs[2*n + 1])^(2*m + 1)(z , - xi) = (- 1)^(m)* (hc[2*n + 1])^(2*m + 1)((1)/(2)*Pi - z , xi)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[hs, 2*n + 1])^(2*m + 1)[z , - \[Xi]] == (- 1)^(m)* (Subscript[hc, 2*n + 1])^(2*m + 1)[Divide[1,2]*Pi - z , \[Xi]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/28.31#Ex25 28.31#Ex25] || [[Item:Q8544|<math>\mathit{hs}_{2n+2}^{2m+2}(z,-\xi) = (-1)^{m}\mathit{hs}_{2n+2}^{2m+2}(\tfrac{1}{2}\pi-z,\xi)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathit{hs}_{2n+2}^{2m+2}(z,-\xi) = (-1)^{m}\mathit{hs}_{2n+2}^{2m+2}(\tfrac{1}{2}\pi-z,\xi)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(hs[2*n + 2])^(2*m + 2)(z , - xi) = (- 1)^(m)* (hs[2*n + 2])^(2*m + 2)((1)/(2)*Pi - z , xi)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Subscript[hs, 2*n + 2])^(2*m + 2)[z , - \[Xi]] == (- 1)^(m)* (Subscript[hs, 2*n + 2])^(2*m + 2)[Divide[1,2]*Pi - z , \[Xi]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/28.31.E21 28.31.E21] || [[Item:Q8545|<math>\int_{0}^{2\pi}\mathit{hc}_{p}^{m_{1}}(x,\xi)\mathit{hc}_{p}^{m_{2}}(x,\xi)\diff{x} = \int_{0}^{2\pi}\mathit{hs}_{p}^{m_{1}}(x,\xi)\mathit{hs}_{p}^{m_{2}}(x,\xi)\diff{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{2\pi}\mathit{hc}_{p}^{m_{1}}(x,\xi)\mathit{hc}_{p}^{m_{2}}(x,\xi)\diff{x} = \int_{0}^{2\pi}\mathit{hs}_{p}^{m_{1}}(x,\xi)\mathit{hs}_{p}^{m_{2}}(x,\xi)\diff{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((hc[p])^(m[1])(x , xi)* (hc[p])^(m[2])(x , xi), x = 0..2*Pi) = int((hs[p])^(m[1])(x , xi)* (hs[p])^(m[2])(x , xi), x = 0..2*Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Subscript[hc, p])^(Subscript[m, 1])[x , \[Xi]]* (Subscript[hc, p])^(Subscript[m, 2])[x , \[Xi]], {x, 0, 2*Pi}, GenerateConditions->None] == Integrate[(Subscript[hs, p])^(Subscript[m, 1])[x , \[Xi]]* (Subscript[hs, p])^(Subscript[m, 2])[x , \[Xi]], {x, 0, 2*Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || Error
|-
| [https://dlmf.nist.gov/28.31.E21 28.31.E21] || [[Item:Q8545|<math>\int_{0}^{2\pi}\mathit{hs}_{p}^{m_{1}}(x,\xi)\mathit{hs}_{p}^{m_{2}}(x,\xi)\diff{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{2\pi}\mathit{hs}_{p}^{m_{1}}(x,\xi)\mathit{hs}_{p}^{m_{2}}(x,\xi)\diff{x} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((hs[p])^(m[1])(x , xi)* (hs[p])^(m[2])(x , xi), x = 0..2*Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Subscript[hs, p])^(Subscript[m, 1])[x , \[Xi]]* (Subscript[hs, p])^(Subscript[m, 2])[x , \[Xi]], {x, 0, 2*Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Manual Skip! || Error
|-
| [https://dlmf.nist.gov/28.31.E22 28.31.E22] || [[Item:Q8546|<math>\int_{u_{0}}^{u_{\infty}}\int_{0}^{2\pi}\mathit{hc}_{p_{1}}^{m_{1}}(u,\xi)\mathit{hc}_{p_{1}}^{m_{1}}(v,\xi)\mathit{hc}_{p_{2}}^{m_{2}}(u,\xi)\mathit{hc}_{p_{2}}^{m_{2}}(v,\xi)\*\left(\cos@{2u}-\cos@{2v}\right)\diff{v}\diff{u} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{u_{0}}^{u_{\infty}}\int_{0}^{2\pi}\mathit{hc}_{p_{1}}^{m_{1}}(u,\xi)\mathit{hc}_{p_{1}}^{m_{1}}(v,\xi)\mathit{hc}_{p_{2}}^{m_{2}}(u,\xi)\mathit{hc}_{p_{2}}^{m_{2}}(v,\xi)\*\left(\cos@{2u}-\cos@{2v}\right)\diff{v}\diff{u} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int((hc[p[1]])^(m[1])(u , xi)* (hc[p[1]])^(m[1])(v , xi)* (hc[p[2]])^(m[2])(u , xi)* (hc[p[2]])^(m[2])(v , xi)*(cos(2*u)- cos(2*v)), v = 0..2*Pi), u = u[0]..u[infinity]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[(Subscript[hc, Subscript[p, 1]])^(Subscript[m, 1])[u , \[Xi]]* (Subscript[hc, Subscript[p, 1]])^(Subscript[m, 1])[v , \[Xi]]* (Subscript[hc, Subscript[p, 2]])^(Subscript[m, 2])[u , \[Xi]]* (Subscript[hc, Subscript[p, 2]])^(Subscript[m, 2])[v , \[Xi]]*(Cos[2*u]- Cos[2*v]), {v, 0, 2*Pi}, GenerateConditions->None], {u, Subscript[u, 0], Subscript[u, Infinity]}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/28.31.E23 28.31.E23] || [[Item:Q8547|<math>\int_{u_{0}}^{u_{\infty}}\int_{0}^{2\pi}\mathit{hs}_{p_{1}}^{m_{1}}(u,\xi)\mathit{hs}_{p_{1}}^{m_{1}}(v,\xi)\mathit{hs}_{p_{2}}^{m_{2}}(u,\xi)\mathit{hs}_{p_{2}}^{m_{2}}(v,\xi)\*\left(\cos@{2u}-\cos@{2v}\right)\diff{v}\diff{u} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{u_{0}}^{u_{\infty}}\int_{0}^{2\pi}\mathit{hs}_{p_{1}}^{m_{1}}(u,\xi)\mathit{hs}_{p_{1}}^{m_{1}}(v,\xi)\mathit{hs}_{p_{2}}^{m_{2}}(u,\xi)\mathit{hs}_{p_{2}}^{m_{2}}(v,\xi)\*\left(\cos@{2u}-\cos@{2v}\right)\diff{v}\diff{u} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int((hs[p[1]])^(m[1])(u , xi)* (hs[p[1]])^(m[1])(v , xi)* (hs[p[2]])^(m[2])(u , xi)* (hs[p[2]])^(m[2])(v , xi)*(cos(2*u)- cos(2*v)), v = 0..2*Pi), u = u[0]..u[infinity]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[(Subscript[hs, Subscript[p, 1]])^(Subscript[m, 1])[u , \[Xi]]* (Subscript[hs, Subscript[p, 1]])^(Subscript[m, 1])[v , \[Xi]]* (Subscript[hs, Subscript[p, 2]])^(Subscript[m, 2])[u , \[Xi]]* (Subscript[hs, Subscript[p, 2]])^(Subscript[m, 2])[v , \[Xi]]*(Cos[2*u]- Cos[2*v]), {v, 0, 2*Pi}, GenerateConditions->None], {u, Subscript[u, 0], Subscript[u, Infinity]}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/28.31.E24 28.31.E24] || [[Item:Q8548|<math>\int_{u_{0}}^{u_{\infty}}\int_{0}^{2\pi}\mathit{hc}_{p_{1}}^{m_{1}}(u,\xi)\mathit{hc}_{p_{1}}^{m_{1}}(v,\xi)\mathit{hs}_{p_{2}}^{m_{2}}(u,\xi)\mathit{hs}_{p_{2}}^{m_{2}}(v,\xi)\*\left(\cos@{2u}-\cos@{2v}\right)\diff{v}\diff{u} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{u_{0}}^{u_{\infty}}\int_{0}^{2\pi}\mathit{hc}_{p_{1}}^{m_{1}}(u,\xi)\mathit{hc}_{p_{1}}^{m_{1}}(v,\xi)\mathit{hs}_{p_{2}}^{m_{2}}(u,\xi)\mathit{hs}_{p_{2}}^{m_{2}}(v,\xi)\*\left(\cos@{2u}-\cos@{2v}\right)\diff{v}\diff{u} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int((hc[p[1]])^(m[1])(u , xi)* (hc[p[1]])^(m[1])(v , xi)* (hs[p[2]])^(m[2])(u , xi)* (hs[p[2]])^(m[2])(v , xi)*(cos(2*u)- cos(2*v)), v = 0..2*Pi), u = u[0]..u[infinity]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[(Subscript[hc, Subscript[p, 1]])^(Subscript[m, 1])[u , \[Xi]]* (Subscript[hc, Subscript[p, 1]])^(Subscript[m, 1])[v , \[Xi]]* (Subscript[hs, Subscript[p, 2]])^(Subscript[m, 2])[u , \[Xi]]* (Subscript[hs, Subscript[p, 2]])^(Subscript[m, 2])[v , \[Xi]]*(Cos[2*u]- Cos[2*v]), {v, 0, 2*Pi}, GenerateConditions->None], {u, Subscript[u, 0], Subscript[u, Infinity]}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/28.32#Ex1 28.32#Ex1] || [[Item:Q8549|<math>x = c\cosh@@{\xi}\cos@@{\eta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x = c\cosh@@{\xi}\cos@@{\eta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x = c*cosh(xi)*cos(eta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>x == c*Cosh[\[Xi]]*Cos[\[Eta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.124702180-.2170218424*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.064186236-.8699661686*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, x = 3/2, xi = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.124702180526338, -0.2170218422419914]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.0641862358993213, -0.869966168513175]
Test Values: {Rule[c, -1.5], Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.32#Ex2 28.32#Ex2] || [[Item:Q8550|<math>y = c\sinh@@{\xi}\sin@@{\eta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>y = c\sinh@@{\xi}\sin@@{\eta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>y = c*sinh(xi)*sin(eta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>y == c*Sinh[\[Xi]]*Sin[\[Eta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.7333267200+1.299026649*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, y = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.266673280+1.299026649*I
Test Values: {c = -3/2, eta = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, y = 3/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.7333267206780307, 1.2990266484068542]
Test Values: {Rule[c, -1.5], Rule[y, -1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.3699661685131748, 0.9358137641006792]
Test Values: {Rule[c, -1.5], Rule[y, -1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.32.E2 28.32.E2] || [[Item:Q8551|<math>\pderiv[2]{V}{x}+\pderiv[2]{V}{y}+k^{2}V = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{V}{x}+\pderiv[2]{V}{y}+k^{2}V = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(V, [x$(2)])+ diff(V, [y$(2)])+ (k)^(2)* V = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[V, {x, 2}]+ D[V, {y, 2}]+ (k)^(2)* V == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8660254040+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.464101616+2.*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.464101615137755, 1.9999999999999998]
Test Values: {Rule[k, 2], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.32.E3 28.32.E3] || [[Item:Q8552|<math>\pderiv[2]{V}{\xi}+\pderiv[2]{V}{\eta}+\frac{1}{2}c^{2}k^{2}(\cosh@{2\xi}-\cos@{2\eta})V = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{V}{\xi}+\pderiv[2]{V}{\eta}+\frac{1}{2}c^{2}k^{2}(\cosh@{2\xi}-\cos@{2\eta})V = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(V, [xi$(2)])+ diff(V, [eta$(2)])+(1)/(2)*(c)^(2)* (k)^(2)*(cosh(2*xi)- cos(2*eta))*V = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[V, {\[Xi], 2}]+ D[V, {\[Eta], 2}]+Divide[1,2]*(c)^(2)* (k)^(2)*(Cosh[2*\[Xi]]- Cos[2*\[Eta]])*V == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [276 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1726552223+4.399682965*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, c = -3/2, eta = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.6906208892+17.59873186*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, c = -3/2, eta = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [276 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.172655223437435, 4.399682962494039]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.69062089374974, 17.598731849976154]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.32.E4 28.32.E4] || [[Item:Q8553|<math>\pderiv[2]{K}{z}-\pderiv[2]{K}{\zeta} = 2q\left(\cos@{2z}-\cos@{2\zeta}\right)K</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{K}{z}-\pderiv[2]{K}{\zeta} = 2q\left(\cos@{2z}-\cos@{2\zeta}\right)K</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(K, [z$(2)])- diff(K, [zeta$(2)]) = 2*q*(cos(2*z)- cos(2*zeta))*K</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[K, {z, 2}]- D[K, {\[Zeta], 2}] == 2*q*(Cos[2*z]- Cos[2*\[Zeta]])*K</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [240 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -4.176649406+6.620283744*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -4.176649406+6.620283744*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [240 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-4.176649405937627, 6.620283737597687]
Test Values: {Rule[K, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.17664940593763, 6.620283737597683]
Test Values: {Rule[K, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.32#Ex3 28.32#Ex3] || [[Item:Q8556|<math>x_{1} = \tfrac{1}{2}c\left(\cosh@{2\alpha}+\cos@{2\beta}-\cosh@{2\gamma}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x_{1} = \tfrac{1}{2}c\left(\cosh@{2\alpha}+\cos@{2\beta}-\cosh@{2\gamma}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x[1] = (1)/(2)*c*(cosh(2*alpha)+ cos(2*beta)- cosh(2*gamma))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[x, 1] == Divide[1,2]*c*(Cosh[2*\[Alpha]]+ Cos[2*\[Beta]]- Cosh[2*\[Gamma]])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.366481639+.5000000000*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[1] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 5.000456235+.8660254040*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[1] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[6.493212844498693, -1.2277437153775796]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[5.127187440714255, -0.8617183115931409]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.32#Ex4 28.32#Ex4] || [[Item:Q8557|<math>x_{2} = 2c\cosh@@{\alpha}\cos@@{\beta}\sinh@@{\gamma}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x_{2} = 2c\cosh@@{\alpha}\cos@@{\beta}\sinh@@{\gamma}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x[2] = 2*c*cosh(alpha)*cos(beta)*sinh(gamma)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[x, 2] == 2*c*Cosh[\[Alpha]]*Cos[\[Beta]]*Sinh[\[Gamma]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.170446049+.5000000000*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1955793552+.8660254040*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.2946642543328961, 0.8348348760715232]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.07136114945154226, 1.200860279855962]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.32#Ex5 28.32#Ex5] || [[Item:Q8558|<math>x_{3} = 2c\sinh@@{\alpha}\sin@@{\beta}\cosh@@{\gamma}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x_{3} = 2c\sinh@@{\alpha}\sin@@{\beta}\cosh@@{\gamma}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>x[3] = 2*c*sinh(alpha)*sin(beta)*cosh(gamma)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[x, 3] == 2*c*Sinh[\[Alpha]]*Sin[\[Beta]]*Cosh[\[Gamma]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 8.329140826+.5000000000*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[3] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.963115422+.8660254040*I
Test Values: {alpha = 3/2, beta = 3/2, c = -3/2, gamma = 1/2*3^(1/2)+1/2*I, x[3] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[8.689146837902154, 3.488871718498607]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 3], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[7.323121434117715, 3.8548971222830457]
Test Values: {Rule[c, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 3], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/28.33.E1 28.33.E1] || [[Item:Q8560|<math>\pderiv[2]{W}{x}+\pderiv[2]{W}{y}-\frac{\rho}{\tau}\pderiv[2]{W}{t} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[2]{W}{x}+\pderiv[2]{W}{y}-\frac{\rho}{\tau}\pderiv[2]{W}{t} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(W, [x$(2)])+ diff(W, [y$(2)])-(rho)/(tau)*diff(W, [t$(2)]) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[W, {x, 2}]+ D[W, {y, 2}]-Divide[\[Rho],\[Tau]]*D[W, {t, 2}] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300]
|}
</div>
</div>

Latest revision as of 17:49, 25 May 2021

Notation
28.1 Special Notation
Mathieu Functions of Integer Order
28.2 Definitions and Basic Properties
28.3 Graphics
28.4 Fourier Series
28.5 Second Solutions Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Mathieufe{n}} , Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Mathieuge{n}}
28.6 Expansions for Small Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q}
28.7 Analytic Continuation of Eigenvalues
28.8 Asymptotic Expansions for Large Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q}
28.9 Zeros
28.10 Integral Equations
28.11 Expansions in Series of Mathieu Functions
Mathieu Functions of Noninteger Order
28.12 Definitions and Basic Properties
28.13 Graphics
28.14 Fourier Series
28.15 Expansions for Small Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q}
28.16 Asymptotic Expansions for Large Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q}
28.17 Stability as Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x\to\pm\infty}
28.18 Integrals and Integral Equations
28.19 Expansions in Series of Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Mathieume{\nu+2n}} Functions
Modified Mathieu Functions
28.20 Definitions and Basic Properties
28.21 Graphics
28.22 Connection Formulas
28.23 Expansions in Series of Bessel Functions
28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
28.25 Asymptotic Expansions for Large Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z}}
28.26 Asymptotic Approximations for Large Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q}
28.27 Addition Theorems
28.28 Integrals, Integral Representations, and Integral Equations
Hill’s Equation
28.29 Definitions and Basic Properties
28.30 Expansions in Series of Eigenfunctions
28.31 Equations of Whittaker–Hill and Ince
Applications
28.32 Mathematical Applications
28.33 Physical Applications
Computation
28.34 Methods of Computation
28.35 Tables
28.36 Software