Mathieu Functions and Hill’s Equation - 28.6 Expansions for Small

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.6.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \liminf_{n\to\infty}\frac{\rho_{n}^{(j)}}{n^{2}} \geq kk^{\prime}(\compellintKk@{k})^{2}}
\liminf_{n\to\infty}\frac{\rho_{n}^{(j)}}{n^{2}} \geq kk^{\prime}(\compellintKk@{k})^{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
[n = infinity]*((rho[n])^(j))/((n)^(2)) >= k*sqrt(1 - (k)^(2))*(EllipticK(k))^(2)
Subscript[, n -> Infinity]*Divide[(Subscript[\[Rho], n])^(j),(n)^(2)] >= k*Sqrt[1 - (k)^(2)]*(EllipticK[(k)^2])^(2)
Failure Failure Error
Failed [300 / 300]
Result: GreaterEqual[Complex[0.5000000000000001, 0.8660254037844386], Indeterminate]
Test Values: {Rule[j, 1], Rule[k, 1], Rule[n, 1], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ρ, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: GreaterEqual[Complex[0.12500000000000003, 0.21650635094610965], Indeterminate]
Test Values: {Rule[j, 1], Rule[k, 1], Rule[n, 2], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ρ, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
28.6.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle kk^{\prime}(\compellintKk@{k})^{2} = 2.04183\;4\dots}
kk^{\prime}(\compellintKk@{k})^{2} = 2.04183\;4\dots
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
k*sqrt(1 - (k)^(2))*(EllipticK(k))^(2) = 2.041834
k*Sqrt[1 - (k)^(2)]*(EllipticK[(k)^2])^(2) == 2.041834
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[4.25477173820126, -1.5664714954570549]
Test Values: {Rule[k, 2]}

... skip entries to safe data