Verifying DLMF with Maple and Mathematica
This page presents the results of the publication: Comparative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems.
Bug Reports
You can find a PDF with commands that illustrate the encountered errors in Mathematica here: File:Mathematica Bugs Overview.pdf
We provide the same file in the Wolfram system notebook format (NB) here: File:Mathematica Bugs Notebook File.nb
DLMF Translations and Results
This section explains the data you can access. Below, you will find a large table that show the overall results of translations, symbolic and numeric verifications, as well as number of errors and aborted calculations for each DLMF chapter. Before you move on invastigating the results, please have a look on how to read the data first.
How to read the data?
You can access the data for a specific DLMF chapter by clicking on one of the links in the next section. This will open a large table presenting the information for each evaluated equation. Here, you see an example of such a table with just two entries from two different chapters. Most importantly, every entry in the table is linked to the actual equation in the DLMF. The most-left column provide a link directly to the particular equation in the DLMF. The results on this website do not provide an exact copy of the DLMF equation. Some equations only make sense when you consider the actual context. For checking the context, please take a look to the actual DLMF page by clicking on the equation label in the most-left column.
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.12.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi(x+1) = e^{\phi(x)}}
\phi(x+1) = e^{\phi(x)} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -1 < x, x < \infty} | phi(x + 1) = exp(phi(x)) |
\[Phi][x + 1] == Exp[\[Phi][x]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
11.5.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}}
\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0} | StruveH(nu, z) - BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)
|
StruveH[\[Nu], z] - BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Failed [15 / 25]
Result: Complex[0.9495382353861556, -0.46093572348323536]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}
Result: Complex[0.7706973036767981, -0.20650772012904173]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}
... skip entries to safe data |
The table above contains the following data.
- DLMF
- Contains the equation label as a link to the actual equation in the DLMF.
- Formula
- Contains the rendered equation of the DLMF and the actual semantic LaTeX source (sometimes also referred to as content-tex). More information about the semantic (or content) LaTeX can be found in REF-TODO
- Constraints
- The constraints
- Maple
- Translations to Maple
- Mathematica
- Translations to Mathematica
- Symbolic (Maple / Mathematica)
- Symbolic evaluation results
- Numeric (Maple / Mathematica)
- Numeric evaluation results
Links to the data
In the following, we present an overview of the translations of the DLMF equations to the CAS Maple and Mathematica.
DLMF | Formula | Translations Maple |
Translations Mathematica |
Symbolic Evaluation Maple |
Symbolic Evaluation Mathematica |
Numeric Evaluation Maple |
Numeric Evaluation Mathematica |
---|---|---|---|---|---|---|---|
DLMF | 6,545 | 4,114 (62.9%) | 4,713 (72.0%) | 1,084 (26.3%) | 1,235 (26.2%) | 698 (26.7%) | 784 (22.6%) |
The following links provide access to all results for each DLMF chapter. Since the pages are quite large, it may take some seconds until they are fully loaded.
- Algebraic and Analytic Methods
- Asymptotic Approximations
- Numerical Methods
- Elementary Functions I & Elementary Functions II
- Gamma Function
- Exponential, Logarithmic, Sine, and Cosine Integrals
- Error Functions, Dawson’s and Fresnel Integrals
- Incomplete Gamma and Related Functions
- Airy and Related Functions
- Bessel Functions I & Bessel Functions II & Bessel Functions III
- Struve and Related Functions
- Parabolic Cylinder Functions
- Confluent Hypergeometric Functions I & Confluent Hypergeometric Functions II
- Legendre and Related Functions I & Legendre and Related Functions II
- Hypergeometric Function I & Hypergeometric Function II
- Generalized Hypergeometric Functions and Meijer G-Function
- q-Hypergeometric and Related Functions
- Orthogonal Polynomials I & Orthogonal Polynomials II
- Elliptic Integrals I & Elliptic Integrals II
- Theta Functions
- Multidimensional Theta Functions
- Jacobian Elliptic Functions
- Weierstrass Elliptic and Modular Functions
- Bernoulli and Euler Polynomials
- Zeta and Related Functions
- Combinatorial Analysis
- Functions of Number Theory
- Mathieu Functions and Hill’s Equation
- Lamé Functions
- Spheroidal Wave Functions
- Heun Functions
- Painlevé Transcendents
- Coulomb Functions
- 3j,6j,9j Symbols
- Functions of Matrix Argument
- Integrals with Coalescing Saddles
Translations and Evaluations Overview Table
Meaning | |
---|---|
2C | Chapter Code |
S | Successful |
% | Percentage |
F | Fail |
P/T | Partially / Totally Failed |
A | Aborted |
E | Errors |
Base | The baseline performance of the translator |
Maple | The CAS Maple 2020 |
Mathematica | The CAS Mathematica |
Symbolic | Numeric | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Formulae | Translations | Maple | Mathematica | Maple | Mathematica | |||||||||||||||||
2C | Total | Base | Maple | Math | S | % | F | S | % | F | S | % | F | [P/T] | A | E | S | % | F | [P/T] | A | E |
1. AL | 227 | 60 | 102 | 103 | 36 | 35.3% | 60 | 34 | 33.0% | 69 | 14 | 23.3% | 35 | [ 12 / 23] | 7 | 4 | 14 | 20.3% | 40 | [ 9 / 31] | 11 | 4 |
2. AS | 136 | 33 | 65 | 65 | 6 | 9.2% | 47 | 6 | 9.2% | 59 | 7 | 14.9% | 33 | [ 5 / 28] | 1 | 5 | 4 | 6.8% | 38 | [ 6 / 32] | 7 | 9 |
3. NM | 53 | 36 | 40 | 40 | 6 | 15.0% | 31 | 5 | 12.5% | 35 | 1 | 3.2% | 27 | [ 9 / 18] | 0 | 2 | 0 | 0.0% | 29 | [ 8 / 21] | 6 | 0 |
4. EF I & II | 569 | 353 | 494 | 564 | 270 | 54.7% | 221 | 304 | 53.9% | 260 | 88 | 39.8% | 126 | [ 64 / 62] | 0 | 6 | 110 | 42.3% | 146 | [ 55 / 91] | 2 | 0 |
5. GA | 144 | 38 | 130 | 139 | 41 | 31.5% | 76 | 65 | 46.8% | 74 | 39 | 51.3% | 25 | [ 12 / 13] | 4 | 8 | 30 | 40.5% | 20 | [ 9 / 11] | 13 | 9 |
6. EX | 107 | 21 | 56 | 77 | 13 | 23.2% | 43 | 18 | 23.4% | 59 | 10 | 23.2% | 31 | [ 13 / 18] | 0 | 2 | 23 | 39.0% | 32 | [ 6 / 26] | 4 | 0 |
7. ER | 149 | 35 | 101 | 120 | 52 | 51.5% | 47 | 45 | 37.5% | 75 | 21 | 44.7% | 23 | [ 10 / 13] | 2 | 1 | 21 | 28.0% | 43 | [ 13 / 30] | 9 | 1 |
8. IG | 204 | 84 | 160 | 163 | 51 | 31.9% | 102 | 65 | 39.9% | 98 | 27 | 26.5% | 61 | [ 20 / 41] | 9 | 5 | 22 | 22.4% | 44 | [ 19 / 25] | 16 | 15 |
9. AI | 235 | 36 | 180 | 179 | 54 | 30.0% | 124 | 69 | 38.5% | 110 | 34 | 27.4% | 75 | [ 41 / 34] | 4 | 8 | 30 | 27.3% | 58 | [ 38 / 20] | 14 | 7 |
10. BS I & II & III | 653 | 143 | 392 | 486 | 80 | 20.4% | 209 | 115 | 23.7% | 371 | 86 | 41.1% | 59 | [ 41 / 18] | 52 | 12 | 90 | 24.2% | 151 | [ 57 / 94] | 92 | 18 |
11. ST | 124 | 48 | 121 | 112 | 39 | 32.2% | 73 | 36 | 32.1% | 76 | 25 | 34.2% | 40 | [ 14 / 26] | 3 | 5 | 21 | 27.6% | 33 | [ 8 / 25] | 10 | 11 |
12. PC | 106 | 33 | 79 | 90 | 25 | 31.6% | 50 | 18 | 20.0% | 72 | 15 | 30.0% | 24 | [ 15 / 9] | 11 | 0 | 13 | 18.0% | 43 | [ 15 / 28] | 12 | 3 |
13. CH I & II | 260 | 126 | 252 | 254 | 75 | 29.8% | 143 | 69 | 27.2% | 185 | 14 | 9.8% | 90 | [ 55 / 35] | 37 | 2 | 23 | 12.4% | 95 | [ 59 / 36] | 45 | 21 |
14. LE I & II | 238 | 166 | 230 | 229 | 30 | 13.0% | 163 | 30 | 13.1% | 199 | 40 | 24.5% | 93 | [ 57 / 36] | 18 | 12 | 59 | 29.6% | 92 | [ 54 / 38] | 41 | 5 |
15. HY I & II | 206 | 148 | 198 | 197 | 46 | 23.2% | 115 | 53 | 26.9% | 144 | 17 | 14.8% | 52 | [ 34 / 18] | 23 | 23 | 23 | 16.0% | 77 | [ 52 / 25] | 29 | 6 |
16. GH | 53 | 20 | 23 | 25 | 3 | 13.0% | 16 | 2 | 8.0% | 23 | 1 | 6.2% | 9 | [ 8 / 1] | 6 | 0 | 1 | 4.3% | 10 | [ 7 / 3] | 9 | 2 |
17. QH | 175 | 1 | 53 | 124 | 23 | 43.4% | 24 | 6 | 4.8% | 118 | 0 | 0.0% | 0 | [ 0 / 0] | 1 | 23 | 13 | 11.0% | 57 | [ 52 / 5] | 39 | 5 |
18. OP I & II | 468 | 132 | 235 | 288 | 65 | 27.6% | 148 | 101 | 35.1% | 185 | 67 | 45.3% | 50 | [ 32 / 18] | 14 | 17 | 45 | 24.3% | 68 | [ 31 / 37] | 52 | 12 |
19. EL I & II | 516 | 103 | 252 | 416 | 39 | 15.5% | 192 | 51 | 12.2% | 365 | 18 | 9.4% | 123 | [ 44 / 79] | 34 | 17 | 18 | 4.9% | 264 | [ 49 / 215] | 61 | 15 |
20. TH | 128 | 52 | 98 | 98 | 10 | 10.2% | 68 | 1 | 1.0% | 97 | 0 | 0.0% | 32 | [ 17 / 15] | 20 | 16 | 33 | 34.0% | 40 | [ 25 / 15] | 24 | 0 |
21. MT | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22. JA | 264 | 115 | 232 | 238 | 46 | 19.8% | 176 | 30 | 12.6% | 206 | 20 | 11.4% | 116 | [ 25 / 91] | 36 | 4 | 22 | 10.7% | 131 | [ 39 / 92] | 51 | 0 |
23. WE | 164 | 7 | 19 | 34 | 1 | 5.3% | 16 | 4 | 11.8% | 30 | 0 | 0.0% | 14 | [ 2 / 12] | 1 | 1 | 2 | 6.7% | 23 | [ 9 / 14] | 2 | 3 |
24. BP | 175 | 31 | 117 | 148 | 15 | 12.8% | 101 | 23 | 15.5% | 125 | 67 | 66.3% | 32 | [ 19 / 13] | 1 | 1 | 78 | 62.4% | 33 | [ 22 / 11] | 14 | 0 |
25. ZE | 154 | 28 | 124 | 120 | 19 | 15.3% | 90 | 48 | 40.0% | 72 | 43 | 47.8% | 29 | [ 18 / 11] | 10 | 8 | 22 | 30.5% | 22 | [ 6 / 16] | 22 | 3 |
26. CM | 136 | 31 | 78 | 87 | 20 | 25.6% | 50 | 19 | 21.8% | 68 | 30 | 60.0% | 11 | [ 8 / 3] | 2 | 7 | 44 | 64.7% | 18 | [ 10 / 8] | 5 | 1 |
27. NT | 79 | 5 | 26 | 15 | 3 | 11.5% | 17 | 6 | 40.0% | 9 | 2 | 11.8% | 6 | [ 3 / 3] | 0 | 8 | 3 | 33.3% | 6 | [ 3 / 3] | 0 | 0 |
28. MA | 267 | 52 | 97 | 110 | 7 | 7.2% | 80 | 7 | 6.4% | 103 | 6 | 7.5% | 32 | [ 12 / 20] | 26 | 15 | 3 | 2.9% | 48 | [ 13 / 35] | 33 | 17 |
29. LA | 111 | 11 | 23 | 22 | 0 | 0.0% | 21 | 0 | 0.0% | 22 | 0 | 0.0% | 19 | [ 2 / 17] | 0 | 2 | 0 | 0.0% | 21 | [ 1 / 20] | 0 | 1 |
30. SW | 71 | 14 | 19 | 26 | 0 | 0.0% | 18 | 0 | 0.0% | 26 | 0 | 0.0% | 18 | [ 5 / 13] | 0 | 0 | 0 | 0.0% | 19 | [ 2 / 17] | 5 | 1 |
31. HE | 35 | 29 | 22 | 15 | 5 | 22.7% | 13 | 2 | 13.3% | 13 | 2 | 15.4% | 10 | [ 0 / 10] | 0 | 1 | 0 | 0.0% | 8 | [ 0 / 8] | 5 | 0 |
32. PT | 67 | 43 | 57 | 57 | 3 | 5.3% | 51 | 3 | 5.3% | 54 | 1 | 2.0% | 44 | [ 7 / 37] | 4 | 2 | 0 | 0.0% | 41 | [ 2 / 39] | 8 | 5 |
33. CW | 108 | 21 | 14 | 11 | 1 | 7.1% | 13 | 0 | 0.0% | 11 | 0 | 0.0% | 5 | [ 2 / 3] | 0 | 8 | 0 | 0.0% | 11 | [ 2 / 9] | 0 | 0 |
34. TJ | 57 | 0 | 1 | 37 | 0 | 0.0% | 1 | 0 | 0.0% | 37 | 0 | 0.0% | 1 | [ 0 / 1] | 0 | 0 | 14 | 37.8% | 10 | [ 5 / 5] | 13 | 0 |
35. FM | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
36. IC | 106 | 12 | 24 | 24 | 0 | 0.0% | 19 | 0 | 0.0% | 24 | 3 | 15.8% | 12 | [ 1 / 11] | 3 | 1 | 3 | 12.5% | 13 | [ 1 / 12] | 1 | 6 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum} | 6545 | 2067 | 4114 | 4713 | 1084 | 26.3% | 2618 | 1235 | 26.2% | 3474 | 698 | 26.7% | 1357 | [607 / 750] | 329 | 226 | 784 | 22.6% | 1784 | [687 / 1097] | 655 | 180 |