Results of Bessel Functions III

From testwiki
Jump to navigation Jump to search
DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.45.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(\nu^{2}-x^{2})w = 0}
x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(\nu^{2}-x^{2})w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((nu)^(2)- (x)^(2))*w = 0
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]+(\[Nu]^(2)- (x)^(2))*w == 0
Failure Failure
Failed [240 / 300]
Result: -1.948557159-.1249999996*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -.2165063507+.8750000006*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [240 / 300]
Result: Complex[-1.948557158514987, -0.12499999999999989]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.9485571585149875, -2.125]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.45.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modBesselIimag{\nu}@{x} = \realpart@{\modBesselI{i\nu}@{x}}}
\displaystyle\modBesselIimag{\nu}@{x} = \realpart@{\modBesselI{i\nu}@{x}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\iunit \nu)+k+1)} > 0}
Re(BesselI(I*(nu), x)) = Re(BesselI(I*nu, x))
Re[BesselI[I*\[Nu], x]] == Re[BesselI[I*\[Nu], x]]
Successful Successful - Successful [Tested: 30]
10.45.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modBesselKimag{\nu}@{x} = \modBesselK{i\nu}@{x}}
\displaystyle\modBesselKimag{\nu}@{x} = \modBesselK{i\nu}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(I*(nu), x) = BesselK(I*nu, x)
BesselK[I*\[Nu], x] == BesselK[I*\[Nu], x]
Successful Successful - Successful [Tested: 30]
10.45.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modBesselIimag{-\nu}@{x} = \modBesselIimag{\nu}@{x}}
\displaystyle\modBesselIimag{-\nu}@{x} = \modBesselIimag{\nu}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Re(BesselI(I*(- nu), x)) = Re(BesselI(I*(nu), x))
Re[BesselI[I*- \[Nu], x]] == Re[BesselI[I*\[Nu], x]]
Skipped - no semantic math Skipped - no semantic math - -
10.45.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modBesselKimag{-\nu}@{x} = \modBesselKimag{\nu}@{x}}
\displaystyle\modBesselKimag{-\nu}@{x} = \modBesselKimag{\nu}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(I*(- nu), x) = BesselK(I*(nu), x)
BesselK[I*- \[Nu], x] == BesselK[I*\[Nu], x]
Skipped - no semantic math Skipped - no semantic math - -
10.45.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modBesselKimag{\nu}@{x},\modBesselIimag{\nu}@{x}} = 1/x}
\Wronskian@{\modBesselKimag{\nu}@{x},\modBesselIimag{\nu}@{x}} = 1/x
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(BesselK(I*(nu), x))*diff(Re(BesselI(I*(nu), x)), x)-diff(BesselK(I*(nu), x), x)*(Re(BesselI(I*(nu), x))) = 1/x
Wronskian[{BesselK[I*\[Nu], x], Re[BesselI[I*\[Nu], x]]}, x] == 1/x
Failure Failure Error
Failed [30 / 30]
Result: Plus[-0.6666666666666666, Times[0.5, Plus[Complex[1.0700115379721733, -0.3754447148158467], Times[Complex[0.1636629185333998, 0.09141848176750039], Derivative[1][Re][Complex[2.445786867824693, 0.6492150843755028]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-0.6666666666666666, Times[0.5, Plus[Complex[0.8415452902387464, 0.2726729041814867], Times[Complex[0.3412924192180222, 0.19179892830603273], Derivative[1][Re][Complex[1.3137906770541619, -0.7251169608509622]]]]]]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.45.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselKimag{0}@{x} = \modBesselK{0}@{x}}
\modBesselKimag{0}@{x} = \modBesselK{0}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(I*(0), x) = BesselK(0, x)
BesselK[I*0, x] == BesselK[0, x]
Successful Successful - Successful [Tested: 3]
10.47.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}+\left(z^{2}-n(n+1)\right)w = 0}
z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}+\left(z^{2}-n(n+1)\right)w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(z)^(2)* diff(w, [z$(2)])+ 2*z*diff(w, z)+((z)^(2)- n*(n + 1))*w = 0
(z)^(2)* D[w, {z, 2}]+ 2*z*D[w, z]+((z)^(2)- n*(n + 1))*w == 0
Failure Failure
Failed [210 / 210]
Result: -1.732050808+.3733632160e-9*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}

Result: -5.196152424-2.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [210 / 210]
Result: Complex[-1.7320508075688772, 1.1102230246251565*^-16]
Test Values: {Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-5.196152422706633, -1.9999999999999996]
Test Values: {Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.47.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}-\left(z^{2}+n(n+1)\right)w = 0}
z^{2}\deriv[2]{w}{z}+2z\deriv{w}{z}-\left(z^{2}+n(n+1)\right)w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(z)^(2)* diff(w, [z$(2)])+ 2*z*diff(w, z)-((z)^(2)+ n*(n + 1))*w = 0
(z)^(2)* D[w, {z, 2}]+ 2*z*D[w, z]-((z)^(2)+ n*(n + 1))*w == 0
Failure Failure
Failed [210 / 210]
Result: -1.732050808-2.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}

Result: -5.196152424-4.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [210 / 210]
Result: Complex[-1.7320508075688776, -1.9999999999999998]
Test Values: {Rule[n, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-5.196152422706632, -3.9999999999999996]
Test Values: {Rule[n, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.47.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z}}
\sphBesselJ{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0}
Error
SphericalBesselJ[n, z] == Sqrt[Divide[1,2]*Pi/z]*BesselJ[n +Divide[1,2], z]
Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 21]
10.47.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z} = (-1)^{n}\sqrt{\tfrac{1}{2}\pi/z}\BesselY{-n-\frac{1}{2}}@{z}}
\sqrt{\tfrac{1}{2}\pi/z}\BesselJ{n+\frac{1}{2}}@{z} = (-1)^{n}\sqrt{\tfrac{1}{2}\pi/z}\BesselY{-n-\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
sqrt((1)/(2)*Pi/z)*BesselJ(n +(1)/(2), z) = (- 1)^(n)*sqrt((1)/(2)*Pi/z)*BesselY(- n -(1)/(2), z)
Sqrt[Divide[1,2]*Pi/z]*BesselJ[n +Divide[1,2], z] == (- 1)^(n)*Sqrt[Divide[1,2]*Pi/z]*BesselY[- n -Divide[1,2], z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.47.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z}}
\sphBesselY{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselY[n, z] == Sqrt[Divide[1,2]*Pi/z]*BesselY[n +Divide[1,2], z]
Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 21]
10.47.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z} = (-1)^{n+1}\sqrt{\tfrac{1}{2}\pi/z}\BesselJ{-n-\frac{1}{2}}@{z}}
\sqrt{\tfrac{1}{2}\pi/z}\BesselY{n+\frac{1}{2}}@{z} = (-1)^{n+1}\sqrt{\tfrac{1}{2}\pi/z}\BesselJ{-n-\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
sqrt((1)/(2)*Pi/z)*BesselY(n +(1)/(2), z) = (- 1)^(n + 1)*sqrt((1)/(2)*Pi/z)*BesselJ(- n -(1)/(2), z)
Sqrt[Divide[1,2]*Pi/z]*BesselY[n +Divide[1,2], z] == (- 1)^(n + 1)*Sqrt[Divide[1,2]*Pi/z]*BesselJ[- n -Divide[1,2], z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.47.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z}}
\sphHankelh{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
SphericalHankelH1[n, z] == Sqrt[Divide[1,2]*Pi/z]*HankelH1[n +Divide[1,2], z]
Missing Macro Error Failure - Successful [Tested: 21]
10.47.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z} = (-1)^{n+1}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{-n-\frac{1}{2}}@{z}}
\sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{n+\frac{1}{2}}@{z} = (-1)^{n+1}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{1}{-n-\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sqrt((1)/(2)*Pi/z)*HankelH1(n +(1)/(2), z) = (- 1)^(n + 1)* I*sqrt((1)/(2)*Pi/z)*HankelH1(- n -(1)/(2), z)
Sqrt[Divide[1,2]*Pi/z]*HankelH1[n +Divide[1,2], z] == (- 1)^(n + 1)* I*Sqrt[Divide[1,2]*Pi/z]*HankelH1[- n -Divide[1,2], z]
Successful Failure - Successful [Tested: 21]
10.47.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z}}
\sphHankelh{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
SphericalHankelH2[n, z] == Sqrt[Divide[1,2]*Pi/z]*HankelH2[n +Divide[1,2], z]
Missing Macro Error Failure - Successful [Tested: 21]
10.47.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z} = (-1)^{n}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{-n-\frac{1}{2}}@{z}}
\sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{n+\frac{1}{2}}@{z} = (-1)^{n}\iunit\sqrt{\tfrac{1}{2}\pi/z}\HankelH{2}{-n-\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sqrt((1)/(2)*Pi/z)*HankelH2(n +(1)/(2), z) = (- 1)^(n)* I*sqrt((1)/(2)*Pi/z)*HankelH2(- n -(1)/(2), z)
Sqrt[Divide[1,2]*Pi/z]*HankelH2[n +Divide[1,2], z] == (- 1)^(n)* I*Sqrt[Divide[1,2]*Pi/z]*HankelH2[- n -Divide[1,2], z]
Successful Failure - Successful [Tested: 21]
10.47.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{n+\frac{1}{2}}@{z}}
\modsphBesseli{1}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{n+\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == Sqrt[Divide[1,2]*Pi/z]*BesselI[n +Divide[1,2], z]
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[0.06771919180965624, -0.29579816936516184]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4498252419402129, -0.19064547195046921]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.47.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{-n-\frac{1}{2}}@{z}}
\modsphBesseli{2}{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselI{-n-\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Sqrt[Divide[1,2]*Pi/z]*BesselI[- n -Divide[1,2], z]
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[-0.41419719140728084, -0.8850762711170854]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1065867555175597, 2.4569570135519543]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.47.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z}}
\modsphBesselK{n}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Sqrt[Divide[1,2]*Pi/z]*BesselK[n +Divide[1,2], z]
Missing Macro Error Successful - Successful [Tested: 21]
10.47.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{-n-\frac{1}{2}}@{z}}
\sqrt{\tfrac{1}{2}\pi/z}\modBesselK{n+\frac{1}{2}}@{z} = \sqrt{\tfrac{1}{2}\pi/z}\modBesselK{-n-\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sqrt((1)/(2)*Pi/z)*BesselK(n +(1)/(2), z) = sqrt((1)/(2)*Pi/z)*BesselK(- n -(1)/(2), z)
Sqrt[Divide[1,2]*Pi/z]*BesselK[n +Divide[1,2], z] == Sqrt[Divide[1,2]*Pi/z]*BesselK[- n -Divide[1,2], z]
Successful Successful - Successful [Tested: 21]
10.47#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{1}{n}@{z} = \sphBesselJ{n}@{z}+i\sphBesselY{n}@{z}}
\sphHankelh{1}{n}@{z} = \sphBesselJ{n}@{z}+i\sphBesselY{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0}
Error
SphericalHankelH1[n, z] == SphericalBesselJ[n, z]+ I*SphericalBesselY[n, z]
Missing Macro Error Successful - Successful [Tested: 21]
10.47#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{2}{n}@{z} = \sphBesselJ{n}@{z}-i\sphBesselY{n}@{z}}
\sphHankelh{2}{n}@{z} = \sphBesselJ{n}@{z}-i\sphBesselY{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0}
Error
SphericalHankelH2[n, z] == SphericalBesselJ[n, z]- I*SphericalBesselY[n, z]
Missing Macro Error Successful - Successful [Tested: 21]
10.47.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = (-1)^{n+1}\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}-\modsphBesseli{2}{n}@{z}\right)}
\modsphBesselK{n}@{z} = (-1)^{n+1}\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}-\modsphBesseli{2}{n}@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == (- 1)^(n + 1)*Divide[1,2]*Pi*(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]- Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n])
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[-0.7569924845794465, -0.925635877692591]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.0316385731075524, -4.1588442590402455]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.47#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = i^{-n}\sphBesselJ{n}@{iz}}
\modsphBesseli{1}{n}@{z} = i^{-n}\sphBesselJ{n}@{iz}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (I)^(- n)* SphericalBesselJ[n, I*z]
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[0.06771919180965624, -0.2957981693651618]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.44982524194021284, -0.19064547195046921]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.47#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = i^{-n-1}\sphBesselY{n}@{iz}}
\modsphBesseli{2}{n}@{z} = i^{-n-1}\sphBesselY{n}@{iz}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == (I)^(- n - 1)* SphericalBesselY[n, I*z]
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[-0.41419719140728045, -0.8850762711170859]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1065867555175588, 2.456957013551956]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.47.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = -\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz}}
\modsphBesselK{n}@{z} = -\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == -Divide[1,2]*Pi*(I)^(n)* SphericalHankelH1[n, I*z]
Missing Macro Error Failure - Successful [Tested: 21]
10.47.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz} = -\tfrac{1}{2}\pi i^{-n}\sphHankelh{2}{n}@{-iz}}
-\tfrac{1}{2}\pi i^{n}\sphHankelh{1}{n}@{iz} = -\tfrac{1}{2}\pi i^{-n}\sphHankelh{2}{n}@{-iz}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
-Divide[1,2]*Pi*(I)^(n)* SphericalHankelH1[n, I*z] == -Divide[1,2]*Pi*(I)^(- n)* SphericalHankelH2[n, - I*z]
Missing Macro Error Failure - Successful [Tested: 21]
10.47.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\sphBesselJ{n}@{-z} = (-1)^{n}\sphBesselJ{n}@{z}}
\displaystyle\sphBesselJ{n}@{-z} = (-1)^{n}\sphBesselJ{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[n, - z] == (- 1)^(n)* SphericalBesselJ[n, z]
Skipped - no semantic math Skipped - no semantic math - -
10.47.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\sphBesselY{n}@{-z} = (-1)^{n+1}\sphBesselY{n}@{z}}
\displaystyle\sphBesselY{n}@{-z} = (-1)^{n+1}\sphBesselY{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
SphericalBesselY[n, - z] == (- 1)^(n + 1)* SphericalBesselY[n, z]
Skipped - no semantic math Skipped - no semantic math - -
10.47.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\sphHankelh{1}{n}@{-z} = (-1)^{n}\sphHankelh{2}{n}@{z}}
\displaystyle\sphHankelh{1}{n}@{-z} = (-1)^{n}\sphHankelh{2}{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
SphericalHankelH1[n, - z] == (- 1)^(n)* SphericalHankelH2[n, z]
Skipped - no semantic math Skipped - no semantic math - -
10.47.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\sphHankelh{2}{n}@{-z} = (-1)^{n}\sphHankelh{1}{n}@{z}}
\displaystyle\sphHankelh{2}{n}@{-z} = (-1)^{n}\sphHankelh{1}{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
SphericalHankelH2[n, - z] == (- 1)^(n)* SphericalHankelH1[n, z]
Skipped - no semantic math Skipped - no semantic math - -
10.47.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modsphBesseli{1}{n}@{-z} = (-1)^{n}\modsphBesseli{1}{n}@{z}}
\displaystyle\modsphBesseli{1}{n}@{-z} = (-1)^{n}\modsphBesseli{1}{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, - z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (- 1)^(n)* Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]
Skipped - no semantic math Skipped - no semantic math - -
10.47.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\modsphBesseli{2}{n}@{-z} = (-1)^{n+1}\modsphBesseli{2}{n}@{z}}
\displaystyle\modsphBesseli{2}{n}@{-z} = (-1)^{n+1}\modsphBesseli{2}{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, - z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == (- 1)^(n + 1)* Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]
Skipped - no semantic math Skipped - no semantic math - -
10.47.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{-z} = -\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}+\modsphBesseli{2}{n}@{z}\right)}
\modsphBesselK{n}@{-z} = -\tfrac{1}{2}\pi\left(\modsphBesseli{1}{n}@{z}+\modsphBesseli{2}{n}@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[1/2 Pi /- z] BesselK[n + 1/2, - z] == -Divide[1,2]*Pi*(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]+ Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n])
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-0.5442463690831921, -1.8549132335154932]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.444806248586177, 3.5599138449204935]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}}
\sphBesselJ{n}@{z} = \sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, k \geq 1}
Error
SphericalBesselJ[n, z] == Sin[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 1)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Cos[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
10.49#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{0}@{z} = \frac{\sin@@{z}}{z}}
\sphBesselJ{0}@{z} = \frac{\sin@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-0-\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[0, z] == Divide[Sin[z],z]
Missing Macro Error Successful - Successful [Tested: 7]
10.49#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{1}@{z} = \frac{\sin@@{z}}{z^{2}}-\frac{\cos@@{z}}{z}}
\sphBesselJ{1}@{z} = \frac{\sin@@{z}}{z^{2}}-\frac{\cos@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((1+\frac{1}{2})+k+1)} > 0, \realpart@@{((-1-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-1-\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[1, z] == Divide[Sin[z],(z)^(2)]-Divide[Cos[z],z]
Missing Macro Error Successful - Successful [Tested: 7]
10.49#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{2}@{z} = \left(-\frac{1}{z}+\frac{3}{z^{3}}\right)\sin@@{z}-\frac{3}{z^{2}}\cos@@{z}}
\sphBesselJ{2}@{z} = \left(-\frac{1}{z}+\frac{3}{z^{3}}\right)\sin@@{z}-\frac{3}{z^{2}}\cos@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((2+\frac{1}{2})+k+1)} > 0, \realpart@@{((-2-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-2-\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[2, z] == (-Divide[1,z]+Divide[3,(z)^(3)])*Sin[z]-Divide[3,(z)^(2)]*Cos[z]
Missing Macro Error Successful - Successful [Tested: 7]
10.49.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{z} = -\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}}
\sphBesselY{n}@{z} = -\cos@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+1}}+\sin@{z-\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, k \geq 1}
Error
SphericalBesselY[n, z] == - Cos[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 1)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Sin[z -Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
10.49#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{0}@{z} = -\frac{\cos@@{z}}{z}}
\sphBesselY{0}@{z} = -\frac{\cos@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(0+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0}
Error
SphericalBesselY[0, z] == -Divide[Cos[z],z]
Missing Macro Error Successful - Successful [Tested: 7]
10.49#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{1}@{z} = -\frac{\cos@@{z}}{z^{2}}-\frac{\sin@@{z}}{z}}
\sphBesselY{1}@{z} = -\frac{\cos@@{z}}{z^{2}}-\frac{\sin@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((1+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(1+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-1-\frac{1}{2})+k+1)} > 0}
Error
SphericalBesselY[1, z] == -Divide[Cos[z],(z)^(2)]-Divide[Sin[z],z]
Missing Macro Error Successful - Successful [Tested: 7]
10.49#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{2}@{z} = \left(\frac{1}{z}-\frac{3}{z^{3}}\right)\cos@@{z}-\frac{3}{z^{2}}\sin@@{z}}
\sphBesselY{2}@{z} = \left(\frac{1}{z}-\frac{3}{z^{3}}\right)\cos@@{z}-\frac{3}{z^{2}}\sin@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((2+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(2+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-2-\frac{1}{2})+k+1)} > 0}
Error
SphericalBesselY[2, z] == (Divide[1,z]-Divide[3,(z)^(3)])*Cos[z]-Divide[3,(z)^(2)]*Sin[z]
Missing Macro Error Successful - Successful [Tested: 7]
10.49.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{1}{n}@{z} = e^{iz}\sum_{k=0}^{n}i^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}}
\sphHankelh{1}{n}@{z} = e^{iz}\sum_{k=0}^{n}i^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k \geq 1}
Error
SphericalHankelH1[n, z] == Exp[I*z]*Sum[(I)^(k - n - 1)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [210 / 210]
Result: Complex[-0.3966692432410339, 0.7497610210111748]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.3157223500929769, 0.5313692545383957]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{2}{n}@{z} = e^{-iz}\sum_{k=0}^{n}(-i)^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}}
\sphHankelh{2}{n}@{z} = e^{-iz}\sum_{k=0}^{n}(-i)^{k-n-1}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k \geq 1}
Error
SphericalHankelH2[n, z] == Exp[- I*z]*Sum[(- I)^(k - n - 1)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
10.49.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n+1}\*\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}}
\modsphBesseli{1}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n+1}\*\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, k \geq 1}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == Divide[1,2]*Exp[z]*Sum[(- 1)^(k)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]+(- 1)^(n + 1)*Divide[1,2]*(E)^(- z)* Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
10.49#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{0}@{z} = \frac{\sinh@@{z}}{z}}
\modsphBesseli{1}{0}@{z} = \frac{\sinh@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((0+\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(0 + 1/2), 0] == Divide[Sinh[z],z]
Missing Macro Error Failure -
Failed [7 / 7]
Result: Complex[-1.0789668887893185, -0.15155203743332835]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.9126970224666039, 0.13712305377128448]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.49#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{1}@{z} = -\frac{\sinh@@{z}}{z^{2}}+\frac{\cosh@@{z}}{z}}
\modsphBesseli{1}{1}@{z} = -\frac{\sinh@@{z}}{z^{2}}+\frac{\cosh@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((1+\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(1 + 1/2), 1] == -Divide[Sinh[z],(z)^(2)]+Divide[Cosh[z],z]
Missing Macro Error Failure -
Failed [7 / 7]
Result: Complex[0.06771919180965646, -0.2957981693651617]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.3178790653897484, -0.6062561841669247]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.49#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\sinh@@{z}-\frac{3}{z^{2}}\cosh@@{z}}
\modsphBesseli{1}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\sinh@@{z}-\frac{3}{z^{2}}\cosh@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((2+\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(2 + 1/2), 2] == (Divide[1,z]+Divide[3,(z)^(3)])*Sinh[z]-Divide[3,(z)^(2)]*Cosh[z]
Missing Macro Error Failure -
Failed [6 / 7]
Result: Complex[0.44982524194021334, -0.19064547195046933]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.2843828483915114, -0.37732112452647515]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.49.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n}\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}}
\modsphBesseli{2}{n}@{z} = \tfrac{1}{2}e^{z}\sum_{k=0}^{n}(-1)^{k}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}+(-1)^{n}\tfrac{1}{2}e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, k \geq 1}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[1,2]*Exp[z]*Sum[(- 1)^(k)*Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]+(- 1)^(n)*Divide[1,2]*(E)^(- z)* Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
10.49#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{0}@{z} = \frac{\cosh@@{z}}{z}}
\modsphBesseli{2}{0}@{z} = \frac{\cosh@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-0-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(0 + 1/2), 0] == Divide[Cosh[z],z]
Missing Macro Error Failure -
Failed [7 / 7]
Result: DirectedInfinity[]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: DirectedInfinity[]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.49#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{1}@{z} = -\frac{\cosh@@{z}}{z^{2}}+\frac{\sinh@@{z}}{z}}
\modsphBesseli{2}{1}@{z} = -\frac{\cosh@@{z}}{z^{2}}+\frac{\sinh@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-1-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(1 + 1/2), 1] == -Divide[Cosh[z],(z)^(2)]+Divide[Sinh[z],z]
Missing Macro Error Failure -
Failed [7 / 7]
Result: Complex[-0.41419719140728073, -0.8850762711170859]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.1181398580617885, 1.2868595835312289]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.49#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\cosh@@{z}-\frac{3}{z^{2}}\sinh@@{z}}
\modsphBesseli{2}{2}@{z} = \left(\frac{1}{z}+\frac{3}{z^{3}}\right)\cosh@@{z}-\frac{3}{z^{2}}\sinh@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-2-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(2 + 1/2), 2] == (Divide[1,z]+Divide[3,(z)^(3)])*Cosh[z]-Divide[3,(z)^(2)]*Sinh[z]
Missing Macro Error Failure -
Failed [6 / 7]
Result: Complex[1.106586755517561, 2.456957013551956]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.803584197807803, -1.2408087832280956]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.49.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = \tfrac{1}{2}\pi e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}}
\modsphBesselK{n}@{z} = \tfrac{1}{2}\pi e^{-z}\sum_{k=0}^{n}\frac{a_{k}(n+\frac{1}{2})}{z^{k+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k \geq 1}
Error
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*Sum[Divide[Subscript[a, k]*(n +Divide[1,2]),(z)^(k + 1)], {k, 0, n}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [210 / 210]
Result: Complex[-1.0260307573251746, 0.0967341401667452]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.907697530268464, -0.43148595883398677]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49#Ex13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{0}@{z} = \tfrac{1}{2}\pi\frac{e^{-z}}{z}}
\modsphBesselK{0}@{z} = \tfrac{1}{2}\pi\frac{e^{-z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[1/2 Pi /z] BesselK[0 + 1/2, z] == Divide[1,2]*Pi*Divide[Exp[- z],z]
Missing Macro Error Failure - Successful [Tested: 7]
10.49#Ex14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{1}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{1}{z^{2}}\right)}
\modsphBesselK{1}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{1}{z^{2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[1/2 Pi /z] BesselK[1 + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*(Divide[1,z]+Divide[1,(z)^(2)])
Missing Macro Error Failure - Successful [Tested: 7]
10.49#Ex15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{2}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{3}{z^{2}}+\frac{3}{z^{3}}\right)}
\modsphBesselK{2}@{z} = \tfrac{1}{2}\pi e^{-z}\left(\frac{1}{z}+\frac{3}{z^{2}}+\frac{3}{z^{3}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[1/2 Pi /z] BesselK[2 + 1/2, z] == Divide[1,2]*Pi*Exp[- z]*(Divide[1,z]+Divide[3,(z)^(2)]+Divide[3,(z)^(3)])
Missing Macro Error Failure - Successful [Tested: 7]
10.49#Ex16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sin@@{z}}{z}}
\sphBesselJ{n}@{z} = z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sin@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
(-Divide[1,z]*D[(z)^(n)*-Divide[1,z], z])^(n)*Divide[Sin[z],z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[0.28766324258243325, 0.13393934480402792]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.302013441049254, 0.9125931496973667]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{z} = -z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cos@@{z}}{z}}
\sphBesselY{n}@{z} = -z^{n}\left(-\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cos@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
SphericalBesselY[n, z] (-Divide[1,z]*D[(z)^(n)*-Divide[1,z], z])^(n)*Divide[Cos[z],z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-0.9342001374760677, 0.968266641946737]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.14357960272401077, 3.9384338499123404]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sinh@@{z}}{z}}
\modsphBesseli{1}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\sinh@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] (Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Sinh[z],z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[0.35534425318828616, -0.09521420567684166]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.19008700336701606, 0.7298484499303669]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cosh@@{z}}{z}}
\modsphBesseli{2}{n}@{z} = z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{\cosh@@{z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] (Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Cosh[z],z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-0.3553442531882861, 0.09521420567684165]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.31198506093225176, 1.0184810034762684]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = (-1)^{n}\tfrac{1}{2}\pi z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{e^{-z}}{z}}
\modsphBesselK{n}@{z} = (-1)^{n}\tfrac{1}{2}\pi z^{n}\left(\frac{1}{z}\deriv{}{z}\right)^{n}\frac{e^{-z}}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == (- 1)^(n)*Divide[1,2]*(Divide[1,z]*D[(z)^(n)*Divide[1,z], z])^(n)*Divide[Exp[- z],z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[0.3593544107322247, -1.2247601267643444]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.45891810409859557, -4.100723067341411]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}^{2}@{z}+\sphBesselY{n}^{2}@{z} = \sum_{k=0}^{n}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}}
\sphBesselJ{n}^{2}@{z}+\sphBesselY{n}^{2}@{z} = \sum_{k=0}^{n}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0}
Error
(SphericalBesselJ[n, z])^(2)+ (SphericalBesselY[n, z])^(2) == Sum[Divide[Subscript[s, k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, n}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [210 / 210]
Result: Complex[-1.2990381056766571, 0.5179491924311224]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-9.999999999999996, 1.5358983848622398]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.49#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{0}^{2}@{z}+\sphBesselY{0}^{2}@{z} = z^{-2}}
\sphBesselJ{0}^{2}@{z}+\sphBesselY{0}^{2}@{z} = z^{-2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-0-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(0+\frac{1}{2}))+k+1)} > 0}
Error
(SphericalBesselJ[0, z])^(2)+ (SphericalBesselY[0, z])^(2) == (z)^(- 2)
Missing Macro Error Successful - Successful [Tested: 7]
10.49#Ex21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{1}^{2}@{z}+\sphBesselY{1}^{2}@{z} = z^{-2}+z^{-4}}
\sphBesselJ{1}^{2}@{z}+\sphBesselY{1}^{2}@{z} = z^{-2}+z^{-4}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((1+\frac{1}{2})+k+1)} > 0, \realpart@@{((-1-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-1-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(1+\frac{1}{2}))+k+1)} > 0}
Error
(SphericalBesselJ[1, z])^(2)+ (SphericalBesselY[1, z])^(2) == (z)^(- 2)+ (z)^(- 4)
Missing Macro Error Successful - Successful [Tested: 7]
10.49#Ex22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{2}^{2}@{z}+\sphBesselY{2}^{2}@{z} = z^{-2}+3z^{-4}+9z^{-6}}
\sphBesselJ{2}^{2}@{z}+\sphBesselY{2}^{2}@{z} = z^{-2}+3z^{-4}+9z^{-6}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((2+\frac{1}{2})+k+1)} > 0, \realpart@@{((-2-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-2-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(2+\frac{1}{2}))+k+1)} > 0}
Error
(SphericalBesselJ[2, z])^(2)+ (SphericalBesselY[2, z])^(2) == (z)^(- 2)+ 3*(z)^(- 4)+ 9*(z)^(- 6)
Missing Macro Error Successful - Successful [Tested: 7]
10.49.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\modsphBesseli{1}{n}@{z}\right)^{2}-\left(\modsphBesseli{2}{n}@{z}\right)^{2} = (-1)^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}}
\left(\modsphBesseli{1}{n}@{z}\right)^{2}-\left(\modsphBesseli{2}{n}@{z}\right)^{2} = (-1)^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{s_{k}(n+\frac{1}{2})}{z^{2k+2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n])^(2)-(Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n])^(2) == (- 1)^(n + 1)* Sum[(- 1)^(k)*Divide[Subscript[s, k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, n}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [210 / 210]
Result: Complex[-1.299038105676658, -0.7500000000000001]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.35182282028742856, 0.20312500000000058]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.50#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}}
\Wronskian@{\sphBesselJ{n}@{z},\sphBesselY{n}@{z}} = z^{-2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0}
Error
Wronskian[{SphericalBesselJ[n, z], SphericalBesselY[n, z]}, z] == (z)^(- 2)
Missing Macro Error Successful - Successful [Tested: 21]
10.50#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}}
\Wronskian@{\sphHankelh{1}{n}@{z},\sphHankelh{2}{n}@{z}} = -2iz^{-2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Wronskian[{SphericalHankelH1[n, z], SphericalHankelH2[n, z]}, z] == - 2*I*(z)^(- 2)
Missing Macro Error Successful - Successful [Tested: 21]
10.50#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}}
\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesseli{2}{n}@{z}} = (-1)^{n+1}z^{-2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n]}, z] == (- 1)^(n + 1)* (z)^(- 2)
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-0.5000000000000001, 0.8660254037844386]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5000000000000001, -0.8660254037844386]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.50#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\}
\Wronskian@{\modsphBesseli{1}{n}@{z},\modsphBesselK{n}@{z}} = \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[0.5384915109869794, 1.7026856201657974]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.6544302063904848, -2.4451654315616667]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.50#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}}
\Wronskian@{\modsphBesseli{2}{n}@{z},\modsphBesselK{n}@{z}}\\ = -\tfrac{1}{2}\pi z^{-2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Wronskian[{Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n], Sqrt[1/2 Pi /z] BesselK[n + 1/2, z]}, z] == -Divide[1,2]*Pi*(z)^(- 2)
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[0.5161524079039588, -2.211692333258562]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[7.686727830477982, 4.996906619076774]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.50#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}}
\sphBesselJ{n+1}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+1}@{z} = z^{-2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(((n+1)+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+1)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n+1)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n+1)+\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[n + 1, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 1, z] == (z)^(- 2)
Missing Macro Error Successful - Successful [Tested: 21]
10.50#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}}
\sphBesselJ{n+2}@{z}\sphBesselY{n}@{z}-\sphBesselJ{n}@{z}\sphBesselY{n+2}@{z} = (2n+3)z^{-3}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(((n+2)+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+2)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n+2)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n+2)+\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[n + 2, z]*SphericalBesselY[n, z]- SphericalBesselJ[n, z]*SphericalBesselY[n + 2, z] == (2*n + 3)*(z)^(- 3)
Missing Macro Error Failure - Successful [Tested: 21]
10.50.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}}
\sphBesselJ{0}@{z}\sphBesselJ{n}@{z}+\sphBesselY{0}@{z}\sphBesselY{n}@{z} = \cos@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{n/2}}(-1)^{k}\frac{a_{2k}(n+\tfrac{1}{2})}{z^{2k+2}}+\sin@{\tfrac{1}{2}n\pi}\sum_{k=0}^{\floor{(n-1)/2}}(-1)^{k}\frac{a_{2k+1}(n+\tfrac{1}{2})}{z^{2k+3}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((0+\frac{1}{2})+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-0-\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-0-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(0+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, k \geq 1}
Error
SphericalBesselJ[0, z]*SphericalBesselJ[n, z]+ SphericalBesselY[0, z]*SphericalBesselY[n, z] == Cos[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k]*(n +Divide[1,2]),(z)^(2*k + 2)], {k, 0, Floor[n/2]}, GenerateConditions->None]+ Sin[Divide[1,2]*n*Pi]*Sum[(- 1)^(k)*Divide[Subscript[a, 2*k + 1]*(n +Divide[1,2]),(z)^(2*k + 3)], {k, 0, Floor[(n - 1)/2]}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
10.51#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{n-1}(z)+f_{n+1}(z) = ((2n+1)/z)f_{n}(z)}
f_{n-1}(z)+f_{n+1}(z) = ((2n+1)/z)f_{n}(z)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
f[n - 1](z)+ f[n + 1](z) = ((2*n + 1)/z)*f[n](z)
Subscript[f, n - 1][z]+ Subscript[f, n + 1][z] == ((2*n + 1)/z)*Subscript[f, n][z]
Skipped - no semantic math Skipped - no semantic math - -
10.51#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}f_{n}(z)) = z^{n-m+1}f_{n-m}(z)}
\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}f_{n}(z)) = z^{n-m+1}f_{n-m}(z)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle m = 0}
(diff((1)/(z), z))^(m)*((z)^(n + 1)* f[n](z)) = (z)^(n - m + 1)* f[n - m](z)
(D[Divide[1,z], z])^(m)*((z)^(n + 1)* Subscript[f, n][z]) == (z)^(n - m + 1)* Subscript[f, n - m][z]
Failure Failure Error
Failed [288 / 300]
Result: Complex[-0.49999999999999994, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.49999999999999994, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.51#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}f_{n}(z)) = (-1)^{m}z^{-n-m}f_{n+m}(z)}
\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}f_{n}(z)) = (-1)^{m}z^{-n-m}f_{n+m}(z)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(diff((1)/(z), z))^(m)*((z)^(- n)* f[n](z)) = (- 1)^(m)* (z)^(- n - m)* f[n + m](z)
(D[Divide[1,z], z])^(m)*((z)^(- n)* Subscript[f, n][z]) == (- 1)^(m)* (z)^(- n - m)* Subscript[f, n + m][z]
Failure Failure
Failed [288 / 300]
Result: 1.366025403-.3660254033*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, f[n] = 1/2*3^(1/2)+1/2*I, f[n+m] = 1/2*3^(1/2)+1/2*I, n = 1, m = 3}

Result: .9999999993-.9999999984*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, f[n] = 1/2*3^(1/2)+1/2*I, f[n+m] = 1/2*3^(1/2)+1/2*I, n = 2, m = 3}

... skip entries to safe data
Failed [288 / 300]
Result: Complex[0.1339745962155613, 0.49999999999999994]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.3660254037844386, 0.36602540378443865]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.51#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle g_{n-1}(z)-g_{n+1}(z) = ((2n+1)/z)g_{n}(z)}
g_{n-1}(z)-g_{n+1}(z) = ((2n+1)/z)g_{n}(z)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
g[n - 1](z)- g[n + 1](z) = ((2*n + 1)/z)*g[n](z)
Subscript[g, n - 1][z]- Subscript[g, n + 1][z] == ((2*n + 1)/z)*Subscript[g, n][z]
Skipped - no semantic math Skipped - no semantic math - -
10.51#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}g_{n}(z)) = z^{n-m+1}g_{n-m}(z)}
\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{n+1}g_{n}(z)) = z^{n-m+1}g_{n-m}(z)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle m = 0}
(diff((1)/(z), z))^(m)*((z)^(n + 1)* g[n](z)) = (z)^(n - m + 1)* g[n - m](z)
(D[Divide[1,z], z])^(m)*((z)^(n + 1)* Subscript[g, n][z]) == (z)^(n - m + 1)* Subscript[g, n - m][z]
Failure Failure Error
Failed [288 / 300]
Result: Complex[-0.49999999999999994, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.49999999999999994, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[Times[-1, m], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.51#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}g_{n}(z)) = z^{-n-m}g_{n+m}(z)}
\left(\frac{1}{z}\deriv{}{z}\right)^{m}(z^{-n}g_{n}(z)) = z^{-n-m}g_{n+m}(z)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(diff((1)/(z), z))^(m)*((z)^(- n)* g[n](z)) = (z)^(- n - m)* g[n + m](z)
(D[Divide[1,z], z])^(m)*((z)^(- n)* Subscript[g, n][z]) == (z)^(- n - m)* Subscript[g, n + m][z]
Failure Failure
Failed [288 / 300]
Result: .3660254028+1.366025403*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, g[n] = 1/2*3^(1/2)+1/2*I, g[n+m] = 1/2*3^(1/2)+1/2*I, n = 1, m = 3}

Result: .9999999987+.9999999996*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, g[n] = 1/2*3^(1/2)+1/2*I, g[n+m] = 1/2*3^(1/2)+1/2*I, n = 2, m = 3}

... skip entries to safe data
Failed [288 / 300]
Result: Complex[-1.8660254037844388, 0.49999999999999994]
Test Values: {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.3660254037844388, 1.3660254037844386]
Test Values: {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[m, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.53.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}}
\sphBesselJ{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < \infty, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[n, z] == (z)^(n)* Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Successful [Tested: 21]
10.53.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}}
\sphBesselY{n}@{z} = -\frac{1}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(\frac{1}{2}z^{2})^{k}}{k!}+\frac{(-1)^{n+1}}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(-\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < |z|, |z| < \infty., \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
SphericalBesselY[n, z] == -Divide[1,(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[(- 1)^(n + 1),(z)^(n + 1)]*Sum[Divide[(-Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Successful [Tested: 21]
10.53.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}}
\modsphBesseli{1}{n}@{z} = z^{n}\sum_{k=0}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2n+2k+1)!!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < \infty, \realpart@@{((n+\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n] == (z)^(n)* Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*n + 2*k + 1)!!], {k, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[0.06771919180965624, -0.29579816936516184]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4498252419402129, -0.19064547195046921]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.53.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}}
\modsphBesseli{2}{n}@{z} = \frac{(-1)^{n}}{z^{n+1}}\sum_{k=0}^{n}\frac{(2n-2k-1)!!(-\frac{1}{2}z^{2})^{k}}{k!}+\frac{1}{z^{n+1}}\sum_{k=n+1}^{\infty}\frac{(\frac{1}{2}z^{2})^{k}}{k!(2k-2n-1)!!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < |z|, |z| < \infty., \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n + 1/2), n] == Divide[(- 1)^(n),(z)^(n + 1)]*Sum[Divide[(2*n - 2*k - 1)!!*(-Divide[1,2]*(z)^(2))^(k),(k)!], {k, 0, n}, GenerateConditions->None]+Divide[1,(z)^(n + 1)]*Sum[Divide[(Divide[1,2]*(z)^(2))^(k),(k)!*(2*k - 2*n - 1)!!], {k, n + 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [20 / 21]
Result: Complex[-0.4141971914072808, -0.8850762711170854]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1065867555175597, 2.456957013551954]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.54.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}}
\sphBesselJ{n}@{z} = \frac{z^{n}}{2^{n+1}n!}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2n+1}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[n, z] == Divide[(z)^(n),(2)^(n + 1)* (n)!]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*n + 1), {\[Theta], 0, Pi}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 21]
10.54.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}}
\sphBesselJ{n}@{z} = \frac{(-i)^{n}}{2}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\assLegendreP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[n, z] == Divide[(- I)^(n),2]*Integrate[Exp[I*z*Cos[\[Theta]]]*LegendreP[n, 0, 3, Cos[\[Theta]]]*Sin[\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]
Missing Macro Error Aborted - Successful [Tested: 21]
10.54.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}}
\modsphBesselK{n}@{z} = \frac{\pi}{2}\int_{1}^{\infty}e^{-zt}\assLegendreP[]{n}@{t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{2}\pi.}
Error
Sqrt[1/2 Pi /z] BesselK[n + 1/2, z] == Divide[Pi,2]*Integrate[Exp[- z*t]*LegendreP[n, 0, 3, t], {t, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
10.54.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}}
\sphBesselJ{n}@{z} = \frac{(-i)^{n+1}}{2\pi}\int_{i\infty}^{(-1+,1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{2}\pi., \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[n, z] == Divide[(- I)^(n + 1),2*Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 + , 1 +)}, GenerateConditions->None]
Missing Macro Error Failure - Error
10.54#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}}
\sphHankelh{1}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
SphericalHankelH1[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (1 +)}, GenerateConditions->None]
Missing Macro Error Failure - Error
10.54#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}}
\sphHankelh{2}{n}@{z} = \frac{(-i)^{n+1}}{\pi}\int_{i\infty}^{(-1+)}e^{izt}\assLegendreQ[]{n}@{t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{1}{2}\pi.}
Error
SphericalHankelH2[n, z] == Divide[(- I)^(n + 1),Pi]*Integrate[Exp[I*z*t]*LegendreQ[n, 0, 3, t], {t, I*Infinity, (- 1 +)}, GenerateConditions->None]
Missing Macro Error Failure - Error
10.56.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\cos@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\cos@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselJ{n-1}@{z}}
\frac{\cos@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\cos@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselJ{n-1}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(((n-1)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n-1)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n-1)-\frac{1}{2}))+k+1)} > 0}
Error
Divide[Cos[Sqrt[(z)^(2)- 2*z*t]],z] == Divide[Cos[z],z]+ Sum[Divide[(t)^(n),(n)!]*SphericalBesselJ[n - 1, z], {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [42 / 42]
Result: Plus[Complex[-1.0653161526495918, 0.32810386977400907], Times[-1.0, NSum[Times[Power[-1.5, n], Power[Factorial[n], -1], SphericalBesselJ[Plus[-1, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-1.8246723112251149, 0.13108435615091096], Times[-1.0, NSum[Times[Power[-1.5, n], Power[Factorial[n], -1], SphericalBesselJ[Plus[-1, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.56.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\sin@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\sin@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselY{n-1}@{z}}
\frac{\sin@@{\sqrt{z^{2}-2zt}}}{z} = \frac{\sin@@{z}}{z}+\sum_{n=1}^{\infty}\frac{t^{n}}{n!}\sphBesselY{n-1}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(((n-1)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-((n-1)+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n-1)-\frac{1}{2})+k+1)} > 0}
Error
Divide[Sin[Sqrt[(z)^(2)- 2*z*t]],z] == Divide[Sin[z],z]+ Sum[Divide[(t)^(n),(n)!]*SphericalBesselY[n - 1, z], {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
10.56.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\cosh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\cosh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{1}{n-1}@{z}}
\frac{\cosh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\cosh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{1}{n-1}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(((n-1)+\frac{1}{2})+k+1)} > 0}
Error
Divide[Cosh[Sqrt[(z)^(2)+ 2*I*z*t]],z] == Divide[Cosh[z],z]+ Sum[Divide[(I*t)^(n),(n)!]*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n - 1 + 1/2), n - 1], {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [42 / 42]
Result: Plus[Complex[-0.13108435615091052, -1.8246723112251153], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[-1, 2], n], Plus[-1, n]], Power[Factorial[n], -1]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.022834987510423566, -1.7127448295681993], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[-1, 2], n], Plus[-1, n]], Power[Factorial[n], -1]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.56.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\sinh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\sinh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{2}{n-1}@{z}}
\frac{\sinh@@{\sqrt{z^{2}+2izt}}}{z} = \frac{\sinh@@{z}}{z}+\sum_{n=1}^{\infty}\frac{(it)^{n}}{n!}\modsphBesseli{2}{n-1}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-(n-1)-\frac{1}{2})+k+1)} > 0}
Error
Divide[Sinh[Sqrt[(z)^(2)+ 2*I*z*t]],z] == Divide[Sinh[z],z]+ Sum[Divide[(I*t)^(n),(n)!]*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(2-1)*(n - 1 + 1/2), n - 1], {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [42 / 42]
Result: Plus[Complex[-0.12983798012989667, -2.1935922908985273], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[-1, n]], Plus[-1, n]], Power[Factorial[n], -1]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-1.4886830119296848, -1.839102010336905], Times[-1.0, NSum[Times[Power[Complex[0.0, -1.5], n], Power[Power[E, Times[Complex[0, Rational[-2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[-1, n]], Plus[-1, n]], Power[Factorial[n], -1]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.56.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\exp@{-\sqrt{z^{2}+2izt}}}{z} = \frac{e^{-z}}{z}+\frac{2}{\pi}\sum_{n=1}^{\infty}\frac{(-it)^{n}}{n!}\modsphBesselK{n-1}@{z}}
\frac{\exp@{-\sqrt{z^{2}+2izt}}}{z} = \frac{e^{-z}}{z}+\frac{2}{\pi}\sum_{n=1}^{\infty}\frac{(-it)^{n}}{n!}\modsphBesselK{n-1}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Divide[Exp[-Sqrt[(z)^(2)+ 2*I*z*t]],z] == Divide[Exp[- z],z]+Divide[2,Pi]*Sum[Divide[(- I*t)^(n),(n)!]*Sqrt[1/2 Pi /z] BesselK[n - 1 + 1/2, z], {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
10.57.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}'@{(n+\tfrac{1}{2})z} = \frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{1}{2}}}\BesselJ{n+\frac{1}{2}}'@{(n+\tfrac{1}{2})z}-\frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{3}{2}}}\BesselJ{n+\frac{1}{2}}@{(n+\tfrac{1}{2})z}}
\sphBesselJ{n}'@{(n+\tfrac{1}{2})z} = \frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{1}{2}}}\BesselJ{n+\frac{1}{2}}'@{(n+\tfrac{1}{2})z}-\frac{\pi^{\frac{1}{2}}}{((2n+1)z)^{\frac{3}{2}}}\BesselJ{n+\frac{1}{2}}@{(n+\tfrac{1}{2})z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
D[SphericalBesselJ[n, (n +Divide[1,2])*z], {(n +Divide[1,2])*z, 1}] == Divide[(Pi)^(Divide[1,2]),((2*n + 1)*z)^(Divide[1,2])]*D[BesselJ[n +Divide[1,2], (n +Divide[1,2])*z], {(n +Divide[1,2])*z, 1}]-Divide[(Pi)^(Divide[1,2]),((2*n + 1)*z)^(Divide[3,2])]*BesselJ[n +Divide[1,2], (n +Divide[1,2])*z]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Plus[Complex[0.14653389603833195, -0.029869009956249915], Times[Complex[-0.988457695936884, 0.2648564413786163], D[Complex[0.36567703182522004, 0.24184221354059504]
Test Values: {Complex[1.299038105676658, 0.7499999999999999], 1.0}]], D[Complex[0.425509744388485, 0.14219887983348967], {Complex[1.299038105676658, 0.7499999999999999], 1.0}]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.06710374092328811, 0.007963502819859997], Times[Complex[-0.7656560389588212, 0.20515691731902835], D[Complex[0.2637838125883578, 0.3348231997381719]
Test Values: {Complex[2.165063509461097, 1.2499999999999998], 1.0}]], D[Complex[0.27065896459303473, 0.20224233103375913], {Complex[2.165063509461097, 1.2499999999999998], 1.0}]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.60.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\cos@@{w}}{w} = -\sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselY{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}}
\frac{\cos@@{w}}{w} = -\sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselY{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |ve^{+ i\alpha}| < |u|, |ve^{- i\alpha}| < |u|, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0}
Error
Divide[Cos[w],w] == - Sum[(2*n + 1)*SphericalBesselJ[n, v]*SphericalBesselY[n, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.43419403794642014, -0.7090399040477617], NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], SphericalBesselJ[n, -0.5], SphericalBesselY[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Plus[Complex[0.43419403794642014, -0.7090399040477617], NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], SphericalBesselJ[n, -0.5], SphericalBesselY[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.60.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\sin@@{w}}{w} = \sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselJ{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}}
\frac{\sin@@{w}}{w} = \sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}@{v}\sphBesselJ{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
Divide[Sin[w],w] == Sum[(2*n + 1)*SphericalBesselJ[n, v]*SphericalBesselJ[n, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.912697022466604, -0.13712305377128448], Times[-1.0, NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Plus[Complex[0.912697022466604, -0.13712305377128448], Times[-1.0, NSum[Times[Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.60.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{e^{-w}}{w} = \frac{2}{\pi}\sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{v}\modsphBesselK{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}}
\frac{e^{-w}}{w} = \frac{2}{\pi}\sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{v}\modsphBesselK{n}@{u}\assLegendreP[]{n}@{\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |ve^{+ i\alpha}| < |u|, |ve^{- i\alpha}| < |u|, \realpart@@{((n+\frac{1}{2})+k+1)} > 0}
Error
Divide[Exp[- w],w] == Divide[2,Pi]*Sum[(2*n + 1)*Sqrt[Divide[Pi, v]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*Sqrt[1/2 Pi /u] BesselK[n + 1/2, u]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure - Skipped - Because timed out
10.60.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselJ{n}@{2z} = -n!z^{n+1}\sum_{k=0}^{n}\frac{2n-2k+1}{k!(2n-k+1)!}\sphBesselJ{n-k}@{z}\sphBesselY{n-k}@{z}}
\sphBesselJ{n}@{2z} = -n!z^{n+1}\sum_{k=0}^{n}\frac{2n-2k+1}{k!(2n-k+1)!}\sphBesselJ{n-k}@{z}\sphBesselY{n-k}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{(((n-k)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n-k)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-(-(n-k)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n-k)+\frac{1}{2}))+k+1)} > 0}
Error
SphericalBesselJ[n, 2*z] == - (n)!*(z)^(n + 1)* Sum[Divide[2*n - 2*k + 1,(k)!*(2*n - k + 1)!]*SphericalBesselJ[n - k, z]*SphericalBesselY[n - k, z], {k, 0, n}, GenerateConditions->None]
Missing Macro Error Aborted -
Failed [6 / 21]
Result: Plus[0.3456774997623559, Times[2.25, Plus[Times[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 1]], Plus[-1, Times[-1, ], Times[2, 1]], Plus[Times[-1, ], Times[2, 1]], Plus[1, Times[-1, ], Times[2, 1]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 1]], Plus[Times[-1, ], Times[2, 1]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 1], Times[40, Power[, 2], 1], Times[24, Power[, 3], 1], Times[-20, , Power[1, 2]], Times[-24, Power[, 2], Power[1, 2]], Times[8, , Power[1, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 1, Power[1.5, 2]], Times[-8, , 1, Power[1.5, 2]], Times[4, Power[1, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 1]], Plus[3, Times[4, ], Times[4, , 1], Times[-4, Power[1, 2]]], Plus[3, Times[8, ], Times[4, Power[<syntaxhighlight lang=mathematica>Result: Plus[0.2986374970757335, Times[6.75, Plus[Times[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 2], Times[40, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, , Power[2, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 2]], Plus[3, Times[4, ], Times[4, , 2], Times[-4, Power[2, 2]]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, , Plus[1, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-5, Power[1.5, 2]], Times[-10, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[12, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[-1, , Plus[1, ], Plus[2, ], Plus[1, Times[2, ], Times[-2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[1], 0], Equal[[2], Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]]], Equal[[3], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]]]], Equal[[4], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]], Times[Rational[1, 12], Power[1.5, -2], Plus[Times[12, Plus[-1, Times[-2, 2]], 2, Plus[-1, Times[2, 2]], 1.5, Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-12, Plus[-1, Times[-2, 2]], 2, Plus[-3, Times[2, 2]], Plus[-1, Times[2, 2]], Power[1.5, -1], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]]]], Plus[Times[-1, 1.5, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-3, Power[1.5, -1], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]], Times[2, 2, Power[1.5, -1], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]]]]]]}]][3.0]], Times[5.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[-3, Times[-17, ], Times[-34, Power[, 2]], Times[-28, Power[, 3]], Times[-8, Power[, 4]], Times[14, 2], Times[54, , 2], Times[64, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, Power[2, 2]], Times[-44, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, Power[2, 3]], Times[8, , Power[2, 3]], Times[-2, Power[1.5, 2]], Times[4, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-6, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[-1, Times[-1, ], 2], Plus[3, Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, Plus[1, ], Plus[2, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-6, Power[1.5, 2]], Times[-12, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[14, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[Plus[1, ], Plus[2, ], Plus[3, ], Plus[-1, Times[-2, ], Times[2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5], SphericalBesselY[2, 1.5]]], Equal[[2], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5], SphericalBesselY[2, 1.5]]]], Equal[[3], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5], SphericalBesselY[Plus[-1, 2], 1.5]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5], SphericalBesselY[2, 1.5]], Times[Rational[1, 2], Power[1.5, -2], Plus[Times[2, Plus[-1, Times[-2, 2]], 2, Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-4, Plus[-1, Times[-2, 2]], Power[2, 2], Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-2, 2, 1.5, Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5]], Times[-4, Power[2, 2], 1.5, Power[Factorial[Plus[1, Times[2, 2]]], -1], SphericalBesselJ[2, 1.5]]], Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]]]]]}]][3.0]]]]], {Rule[n, 2], Rule[z, 1.5]}

... skip entries to safe data
10.60.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphBesselY{n}@{2z} = n!z^{n+1}\sum_{k=0}^{n}\frac{n-k+\frac{1}{2}}{k!(2n-k+1)!}{\left(\sphBesselJ{n-k}^{2}@{z}-\sphBesselY{n-k}^{2}@{z}\right)}}
\sphBesselY{n}@{2z} = n!z^{n+1}\sum_{k=0}^{n}\frac{n-k+\frac{1}{2}}{k!(2n-k+1)!}{\left(\sphBesselJ{n-k}^{2}@{z}-\sphBesselY{n-k}^{2}@{z}\right)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(((n-k)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n-k)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(n-k)-\frac{1}{2}))+k+1)} > 0, \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(n+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-((n-k)+\frac{1}{2}))+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0}
Error
SphericalBesselY[n, 2*z] == (n)!*(z)^(n + 1)* Sum[Divide[n - k +Divide[1,2],(k)!*(2*n - k + 1)!]*((SphericalBesselJ[n - k, z])^(2)- (SphericalBesselY[n - k, z])^(2)), {k, 0, n}, GenerateConditions->None]
Missing Macro Error Aborted -
Failed [6 / 21]
Result: Plus[0.06295916360231597, Times[-1.125, Plus[Times[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 1]], Plus[-1, Times[-1, ], Times[2, 1]], Plus[Times[-1, ], Times[2, 1]], Plus[1, Times[-1, ], Times[2, 1]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 1]], Plus[Times[-1, ], Times[2, 1]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 1], Times[40, Power[, 2], 1], Times[24, Power[, 3], 1], Times[-20, , Power[1, 2]], Times[-24, Power[, 2], Power[1, 2]], Times[8, , Power[1, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 1, Power[1.5, 2]], Times[-8, , 1, Power[1.5, 2]], Times[4, Power[1, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 1]], Plus[3, Times[4, ], Times[4, , 1], Times[-4, Power[1, 2]]], Plus[3, Times[8, ], Times[4, Pow<syntaxhighlight lang=mathematica>Result: Plus[-0.26703833526449916, Times[-3.375, Plus[Times[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 2], Times[40, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, , Power[2, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 2]], Plus[3, Times[4, ], Times[4, , 2], Times[-4, Power[2, 2]]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, , Plus[1, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-5, Power[1.5, 2]], Times[-10, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[12, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[-1, , Plus[1, ], Plus[2, ], Plus[1, Times[2, ], Times[-2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[1], 0], Equal[[2], Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]]], Equal[[3], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], 2]]]], Equal[[4], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], 2]], Times[-1, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, Plus[-1, Times[2, 2]], Plus[3, Times[-8, 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[Plus[-3, Times[2, 2]], Power[1.5, 2], Power[SphericalBesselJ[2, 1.5], 2]], Times[Plus[-3, Times[2, 2]], Power[1.5, -2], Plus[3, Times[-8, 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], Power[Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], 2]]]]]]}]][3.0]], Times[2.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[Times[-3, ], Times[-14, Power[, 2]], Times[-20, Power[, 3]], Times[-8, Power[, 4]], Times[14, , 2], Times[40, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, , Power[2, 3]], Times[-3, Power[1.5, 2]], Times[2, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-4, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[, Plus[1, , Times[-2, 2]], Plus[3, Times[4, ], Times[4, , 2], Times[-4, Power[2, 2]]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, , Plus[1, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-5, Power[1.5, 2]], Times[-10, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[12, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[-1, , Plus[1, ], Plus[2, ], Plus[1, Times[2, ], Times[-2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[1], 0], Equal[[2], Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]]], Equal[[3], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]], 2]]]], Equal[[4], Plus[Times[-1, Plus[-1, Times[-2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[-2, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]], 2]], Times[-1, Plus[-1, Times[-2, 2]], 2, Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Plus[Times[-1, Plus[-1, Times[2, 2]], Plus[3, Times[-8, 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[Plus[-3, Times[2, 2]], Power[1.5, 2], Power[SphericalBesselY[2, 1.5], 2]], Times[Plus[-3, Times[2, 2]], Power[1.5, -2], Plus[3, Times[-8, 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], Power[Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]], 2]]]]]]}]][3.0]], Times[5.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[-3, Times[-17, ], Times[-34, Power[, 2]], Times[-28, Power[, 3]], Times[-8, Power[, 4]], Times[14, 2], Times[54, , 2], Times[64, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, Power[2, 2]], Times[-44, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, Power[2, 3]], Times[8, , Power[2, 3]], Times[-2, Power[1.5, 2]], Times[4, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-6, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[-1, Times[-1, ], 2], Plus[3, Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, Plus[1, ], Plus[2, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-6, Power[1.5, 2]], Times[-12, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[14, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[Plus[1, ], Plus[2, ], Plus[3, ], Plus[-1, Times[-2, ], Times[2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[2, 1.5], 2]]], Equal[[2], Plus[Times[Plus[1, Times[2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[2, 1.5], 2]]]], Equal[[3], Plus[Times[Plus[1, Times[2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[Plus[-1, 2], 1.5], 2]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselJ[2, 1.5], 2]], Times[2, Plus[1, Times[2, 2]], Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselJ[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselJ[2, 1.5]]], 2]]]]}]][3.0]], Times[-5.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[-3, Times[-2, ], Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[1, Times[-1, ], Times[2, 2]], Power[1.5, 2], []], Times[-1, Plus[-1, Times[-1, ], Times[2, 2]], Plus[Times[-1, ], Times[2, 2]], Plus[-3, Times[-17, ], Times[-34, Power[, 2]], Times[-28, Power[, 3]], Times[-8, Power[, 4]], Times[14, 2], Times[54, , 2], Times[64, Power[, 2], 2], Times[24, Power[, 3], 2], Times[-20, Power[2, 2]], Times[-44, , Power[2, 2]], Times[-24, Power[, 2], Power[2, 2]], Times[8, Power[2, 3]], Times[8, , Power[2, 3]], Times[-2, Power[1.5, 2]], Times[4, , Power[1.5, 2]], Times[4, Power[, 2], Power[1.5, 2]], Times[-6, 2, Power[1.5, 2]], Times[-8, , 2, Power[1.5, 2]], Times[4, Power[2, 2], Power[1.5, 2]]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[-1, Times[-1, ], 2], Plus[3, Times[2, 2]], Plus[-1, Times[-1, ], Times[2, 2]], Plus[3, Times[8, ], Times[4, Power[, 2]], Times[-8, 2], Times[-8, , 2], Times[4, Power[2, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[-1, Plus[1, ], Plus[2, ], Plus[9, Times[39, ], Times[58, Power[, 2]], Times[36, Power[, 3]], Times[8, Power[, 4]], Times[-48, 2], Times[-146, , 2], Times[-136, Power[, 2], 2], Times[-40, Power[, 3], 2], Times[88, Power[2, 2]], Times[164, , Power[2, 2]], Times[72, Power[, 2], Power[2, 2]], Times[-64, Power[2, 3]], Times[-56, , Power[2, 3]], Times[16, Power[2, 4]], Times[-6, Power[1.5, 2]], Times[-12, , Power[1.5, 2]], Times[-4, Power[, 2], Power[1.5, 2]], Times[14, 2, Power[1.5, 2]], Times[8, , 2, Power[1.5, 2]], Times[-4, Power[2, 2], Power[1.5, 2]]], [Plus[3, ]]], Times[Plus[1, ], Plus[2, ], Plus[3, ], Plus[-1, Times[-2, ], Times[2, 2]], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[2, 1.5], 2]]], Equal[[2], Plus[Times[Plus[1, Times[2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[2, 1.5], 2]]]], Equal[[3], Plus[Times[Plus[1, Times[2, 2]], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[Plus[-1, 2], 1.5], 2]], Times[Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[SphericalBesselY[2, 1.5], 2]], Times[2, Plus[1, Times[2, 2]], Power[1.5, -2], Power[Factorial[Plus[1, Times[2, 2]]], -1], Power[Plus[Times[-1, SphericalBesselY[Plus[-1, 2], 1.5]], Times[2, 2, SphericalBesselY[Plus[-1, 2], 1.5]], Times[-1, 1.5, SphericalBesselY[2, 1.5]]], 2]]]]}]][3.0]]]]], {Rule[n, 2], Rule[z, 1.5]}

... skip entries to safe data
10.60.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modsphBesselK{n}@{2z} = \frac{1}{\pi}n!z^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{2n-2k+1}{k!(2n-k+1)!}\modsphBesselK{n-k}^{2}@{z}}
\modsphBesselK{n}@{2z} = \frac{1}{\pi}n!z^{n+1}\sum_{k=0}^{n}(-1)^{k}\frac{2n-2k+1}{k!(2n-k+1)!}\modsphBesselK{n-k}^{2}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[1/2 Pi /2*z] BesselK[n + 1/2, 2*z] == Divide[1,Pi]*(n)!*(z)^(n + 1)* Sum[(- 1)^(k)*Divide[2*n - 2*k + 1,(k)!*(2*n - k + 1)!]*(Sqrt[1/2 Pi /z] BesselK[n - k + 1/2, z])^(2), {k, 0, n}, GenerateConditions->None]
Missing Macro Error Aborted -
Failed [21 / 21]
Result: Complex[0.10365998143807895, 0.01421463603104145]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.21384035370849797, -0.0374061947505589]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.60.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{iz\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)i^{n}\sphBesselJ{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}}
e^{iz\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)i^{n}\sphBesselJ{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
Exp[I*z*Cos[\[Alpha]]] == Sum[(2*n + 1)*(I)^(n)* SphericalBesselJ[n, z]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Plus[Complex[0.9634389243184156, 0.05909441627762202], Times[-1.0, NSum[Times[Power[Complex[0, 1], n], Plus[1, Times[2, n]], LegendreP[n, 0.0707372016677029], SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Plus[Complex[0.46738148067268087, 0.44423123280344756], Times[-1.0, NSum[Times[Power[Complex[0, 1], n], Plus[1, Times[2, n]], LegendreP[n, 0.8775825618903728], SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.60.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}}
e^{z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0}
Error
Exp[z*Cos[\[Alpha]]] == Sum[(2*n + 1)*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Plus[Complex[1.0625106169893304, 0.037595191618525974], Times[-1.0, NSum[Times[Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.0707372016677029]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Plus[Complex[1.935725445820811, 0.9084451535292719], Times[-1.0, NSum[Times[Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.8775825618903728]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.60.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(-1)^{n}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}}
e^{-z\cos@@{\alpha}} = \sum_{n=0}^{\infty}(-1)^{n}(2n+1)\modsphBesseli{1}{n}@{z}\assLegendreP[]{n}@{\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0}
Error
Exp[- z*Cos[\[Alpha]]] == Sum[(- 1)^(n)*(2*n + 1)*Sqrt[Divide[Pi, z]/2] BesselI[(-1)^(1-1)*(n + 1/2), n]*LegendreP[n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Plus[Complex[0.939990215282077, -0.03326000860415312], Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.0707372016677029]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Plus[Complex[0.4233587200353881, -0.19868425982147583], Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[-1, 6]], Pi]], Rational[1, 2]], Plus[1, Times[2, n]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], n], n], LegendreP[n, 0.8775825618903728]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.60.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{0}@{z\sin@@{\alpha}} = \sum_{n=0}^{\infty}(4n+1)\frac{(2n)!}{2^{2n}(n!)^{2}}\sphBesselJ{2n}@{z}\assLegendreP[]{2n}@{\cos@@{\alpha}}}
\BesselJ{0}@{z\sin@@{\alpha}} = \sum_{n=0}^{\infty}(4n+1)\frac{(2n)!}{2^{2n}(n!)^{2}}\sphBesselJ{2n}@{z}\assLegendreP[]{2n}@{\cos@@{\alpha}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(((2n)+\frac{1}{2})+k+1)} > 0, \realpart@@{((-(2n)-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-(2n)-\frac{1}{2}))+k+1)} > 0}
Error
BesselJ[0, z*Sin[\[Alpha]]] == Sum[(4*n + 1)*Divide[(2*n)!,(2)^(2*n)*((n)!)^(2)]*SphericalBesselJ[2*n, z]*LegendreP[2*n, 0, 3, Cos[\[Alpha]]], {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [21 / 21]
Result: Plus[Complex[0.8683151459050518, -0.20203213835937428], Times[-1.0, NSum[Times[Power[2, Times[-2, n]], Plus[1, Times[4, n]], Power[Factorial[n], -2], Factorial[Times[2, n]], LegendreP[Times[2, n], 0.0707372016677029], SphericalBesselJ[Times[2, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Plus[Complex[0.9708614168197589, -0.04904886793011446], Times[-1.0, NSum[Times[Power[2, Times[-2, n]], Plus[1, Times[4, n]], Power[Factorial[n], -2], Factorial[Times[2, n]], LegendreP[Times[2, n], 0.8775825618903728], SphericalBesselJ[Times[2, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.60.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\sphBesselJ{n}^{2}@{z} = \frac{\sinint@{2z}}{2z}}
\sum_{n=0}^{\infty}\sphBesselJ{n}^{2}@{z} = \frac{\sinint@{2z}}{2z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
Sum[(SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == Divide[SinIntegral[2*z],2*z]
Missing Macro Error Successful - Successful [Tested: 7]
10.60.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}^{2}@{z} = 1}
\sum_{n=0}^{\infty}(2n+1)\sphBesselJ{n}^{2}@{z} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
Sum[(2*n + 1)*(SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == 1
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[-1.0, NSum[Times[Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-1.0, NSum[Times[Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.60.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}(-1)^{n}(2n+1)\sphBesselJ{n}^{2}@{z} = \frac{\sin@{2z}}{2z}}
\sum_{n=0}^{\infty}(-1)^{n}(2n+1)\sphBesselJ{n}^{2}@{z} = \frac{\sin@{2z}}{2z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
Sum[(- 1)^(n)*(2*n + 1)*(SphericalBesselJ[n, z])^(2), {n, 0, Infinity}, GenerateConditions->None] == Divide[Sin[2*z],2*z]
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-0.6123335037567501, 0.46246896224791606], NSum[Times[Power[-1, n], Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-1.2536290109103816, -0.6921871649112455], NSum[Times[Power[-1, n], Plus[1, Times[2, n]], Power[SphericalBesselJ[n, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.60.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}(2n+1)(\sphBesselJ{n}'@{z})^{2} = \tfrac{1}{3}}
\sum_{n=0}^{\infty}(2n+1)(\sphBesselJ{n}'@{z})^{2} = \tfrac{1}{3}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+\frac{1}{2})+k+1)} > 0, \realpart@@{((-n-\frac{1}{2})+k+1)} > 0, \realpart@@{((-(-n-\frac{1}{2}))+k+1)} > 0}
Error
Sum[(2*n + 1)*(D[SphericalBesselJ[n, z], {z, 1}])^(2), {n, 0, Infinity}, GenerateConditions->None] == Divide[1,3]
Missing Macro Error Aborted - Skipped - Because timed out
10.61.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \BesselJ{\nu}@{xe^{3\pi i/4}}}
\Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \BesselJ{\nu}@{xe^{3\pi i/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
KelvinBer(nu, x)+ I*KelvinBei(nu, x) = BesselJ(nu, x*exp(3*Pi*I/4))
KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == BesselJ[\[Nu], x*Exp[3*Pi*I/4]]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 30]
10.61.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{xe^{3\pi i/4}} = e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}}}
\BesselJ{\nu}@{xe^{3\pi i/4}} = e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
BesselJ(nu, x*exp(3*Pi*I/4)) = exp(nu*Pi*I)*BesselJ(nu, x*exp(- Pi*I/4))
BesselJ[\[Nu], x*Exp[3*Pi*I/4]] == Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], x*Exp[- Pi*I/4]]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.61.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}} = e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}}}
e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}} = e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
exp(nu*Pi*I)*BesselJ(nu, x*exp(- Pi*I/4)) = exp(nu*Pi*I/2)*BesselI(nu, x*exp(Pi*I/4))
Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], x*Exp[- Pi*I/4]] == Exp[\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[Pi*I/4]]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.61.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}} = e^{3\nu\pi i/2}\modBesselI{\nu}@{xe^{-3\pi i/4}}}
e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}} = e^{3\nu\pi i/2}\modBesselI{\nu}@{xe^{-3\pi i/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
exp(nu*Pi*I/2)*BesselI(nu, x*exp(Pi*I/4)) = exp(3*nu*Pi*I/2)*BesselI(nu, x*exp(- 3*Pi*I/4))
Exp[\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[Pi*I/4]] == Exp[3*\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[- 3*Pi*I/4]]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.61.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{\nu}@@{x}+i\Kelvinkei{\nu}@@{x} = e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}}}
\Kelvinker{\nu}@@{x}+i\Kelvinkei{\nu}@@{x} = e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKer(nu, x)+ I*KelvinKei(nu, x) = exp(- nu*Pi*I/2)*BesselK(nu, x*exp(Pi*I/4))
KelvinKer[\[Nu], x]+ I*KelvinKei[\[Nu], x] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], x*Exp[Pi*I/4]]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.61.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}} = \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}}}
e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}} = \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
exp(- nu*Pi*I/2)*BesselK(nu, x*exp(Pi*I/4)) = (1)/(2)*Pi*I*HankelH1(nu, x*exp(3*Pi*I/4))
Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], x*Exp[Pi*I/4]] == Divide[1,2]*Pi*I*HankelH1[\[Nu], x*Exp[3*Pi*I/4]]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.61.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}} = -\tfrac{1}{2}\pi ie^{-\nu\pi i}\HankelH{2}{\nu}@{xe^{-\pi i/4}}}
\tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}} = -\tfrac{1}{2}\pi ie^{-\nu\pi i}\HankelH{2}{\nu}@{xe^{-\pi i/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*Pi*I*HankelH1(nu, x*exp(3*Pi*I/4)) = -(1)/(2)*Pi*I*exp(- nu*Pi*I)*HankelH2(nu, x*exp(- Pi*I/4))
Divide[1,2]*Pi*I*HankelH1[\[Nu], x*Exp[3*Pi*I/4]] == -Divide[1,2]*Pi*I*Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], x*Exp[- Pi*I/4]]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.61.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}-(ix^{2}+\nu^{2})w = 0}
x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}-(ix^{2}+\nu^{2})w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)-(I*(x)^(2)+ (nu)^(2))*w = 0
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]-(I*(x)^(2)+ \[Nu]^(2))*w == 0
Failure Failure
Failed [300 / 300]
Result: 1.125000000-2.948557160*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: .1249999997-1.216506352*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.1249999999999996, -2.948557158514987]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1249999999999996, -0.9485571585149869]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.61.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{4}\deriv[4]{w}{x}+2x^{3}\deriv[3]{w}{x}-(1+2\nu^{2})\left(x^{2}\deriv[2]{w}{x}-x\deriv{w}{x}\right)+(\nu^{4}-4\nu^{2}+x^{4})w = 0}
x^{4}\deriv[4]{w}{x}+2x^{3}\deriv[3]{w}{x}-(1+2\nu^{2})\left(x^{2}\deriv[2]{w}{x}-x\deriv{w}{x}\right)+(\nu^{4}-4\nu^{2}+x^{4})w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w = \Kelvinber{+\nu}@@{x}, w = \Kelvinber{-\nu}@@{x}}
(x)^(4)* diff(w, [x$(4)])+ 2*(x)^(3)* diff(w, [x$(3)])-(1 + 2*(nu)^(2))*((x)^(2)* diff(w, [x$(2)])- x*diff(w, x))+((nu)^(4)- 4*(nu)^(2)+ (x)^(4))*w = 0
(x)^(4)* D[w, {x, 4}]+ 2*(x)^(3)* D[w, {x, 3}]-(1 + 2*\[Nu]^(2))*((x)^(2)* D[w, {x, 2}]- x*D[w, x])+(\[Nu]^(4)- 4*\[Nu]^(2)+ (x)^(4))*w == 0
Error Failure - Skip - No test values generated
10.61#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{n}@{-x} = (-1)^{n}\Kelvinber{n}@@{x}}
\Kelvinber{n}@{-x} = (-1)^{n}\Kelvinber{n}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0}
KelvinBer(n, - x) = (- 1)^(n)* KelvinBer(n, x)
KelvinBer[n, - x] == (- 1)^(n)* KelvinBer[n, x]
Successful Failure - Successful [Tested: 9]
10.61#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{n}@{-x} = (-1)^{n}\Kelvinbei{n}@@{x}}
\Kelvinbei{n}@{-x} = (-1)^{n}\Kelvinbei{n}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinBei(n, - x) = (- 1)^(n)* KelvinBei(n, x)
KelvinBei[n, - x] == (- 1)^(n)* KelvinBei[n, x]
Successful Failure - Successful [Tested: 9]
10.61#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinber{\nu}@@{x}+\sin@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinker{\nu}@@{x}}
\Kelvinber{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinber{\nu}@@{x}+\sin@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinker{\nu}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
KelvinBer(- nu, x) = cos(nu*Pi)*KelvinBer(nu, x)+ sin(nu*Pi)*KelvinBei(nu, x)+(2/Pi)*sin(nu*Pi)*KelvinKer(nu, x)
KelvinBer[- \[Nu], x] == Cos[\[Nu]*Pi]*KelvinBer[\[Nu], x]+ Sin[\[Nu]*Pi]*KelvinBei[\[Nu], x]+(2/Pi)*Sin[\[Nu]*Pi]*KelvinKer[\[Nu], x]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.61#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{-\nu}@@{x} = -\sin@{\nu\pi}\Kelvinber{\nu}@@{x}+\cos@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}}
\Kelvinbei{-\nu}@@{x} = -\sin@{\nu\pi}\Kelvinber{\nu}@@{x}+\cos@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
KelvinBei(- nu, x) = - sin(nu*Pi)*KelvinBer(nu, x)+ cos(nu*Pi)*KelvinBei(nu, x)+(2/Pi)*sin(nu*Pi)*KelvinKei(nu, x)
KelvinBei[- \[Nu], x] == - Sin[\[Nu]*Pi]*KelvinBer[\[Nu], x]+ Cos[\[Nu]*Pi]*KelvinBei[\[Nu], x]+(2/Pi)*Sin[\[Nu]*Pi]*KelvinKei[\[Nu], x]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.61#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinker{\nu}@@{x}-\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}}
\Kelvinker{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinker{\nu}@@{x}-\sin@{\nu\pi}\Kelvinkei{\nu}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKer(- nu, x) = cos(nu*Pi)*KelvinKer(nu, x)- sin(nu*Pi)*KelvinKei(nu, x)
KelvinKer[- \[Nu], x] == Cos[\[Nu]*Pi]*KelvinKer[\[Nu], x]- Sin[\[Nu]*Pi]*KelvinKei[\[Nu], x]
Successful Failure - Successful [Tested: 30]
10.61#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{-\nu}@@{x} = \sin@{\nu\pi}\Kelvinker{\nu}@@{x}+\cos@{\nu\pi}\Kelvinkei{\nu}@@{x}}
\Kelvinkei{-\nu}@@{x} = \sin@{\nu\pi}\Kelvinker{\nu}@@{x}+\cos@{\nu\pi}\Kelvinkei{\nu}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKei(- nu, x) = sin(nu*Pi)*KelvinKer(nu, x)+ cos(nu*Pi)*KelvinKei(nu, x)
KelvinKei[- \[Nu], x] == Sin[\[Nu]*Pi]*KelvinKer[\[Nu], x]+ Cos[\[Nu]*Pi]*KelvinKei[\[Nu], x]
Successful Failure - Successful [Tested: 30]
10.61#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{-n}@@{x} = (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x}}
\Kelvinber{-n}@@{x} = (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0}
KelvinBer(- n, x) = (- 1)^(n)* KelvinBer(n, x); *KelvinBei(- n, x)
KelvinBer[- n, x] == (- 1)^(n)* KelvinBer[n, x]
 *KelvinBei[- n, x]
Error Failure - Error
10.61#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x} = (-1)^{n}\Kelvinbei{n}@@{x}}
(-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x} = (-1)^{n}\Kelvinbei{n}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0}
(- 1)^(n)* KelvinBer(n, x),*KelvinBei(- n, x) = (- 1)^(n)* KelvinBei(n, x)
(- 1)^(n)* KelvinBer[n, x],*KelvinBei[- n, x] == (- 1)^(n)* KelvinBei[n, x]
Error Failure - Error
10.61#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{-n}@@{x} = (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x}}
\Kelvinker{-n}@@{x} = (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKer(- n, x) = (- 1)^(n)* KelvinKer(n, x); *KelvinKei(- n, x)
KelvinKer[- n, x] == (- 1)^(n)* KelvinKer[n, x]
 *KelvinKei[- n, x]
Error Failure - Error
10.61#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x} = (-1)^{n}\Kelvinkei{n}@@{x}}
(-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x} = (-1)^{n}\Kelvinkei{n}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(- 1)^(n)* KelvinKer(n, x),*KelvinKei(- n, x) = (- 1)^(n)* KelvinKei(n, x)
(- 1)^(n)* KelvinKer[n, x],*KelvinKei[- n, x] == (- 1)^(n)* KelvinKei[n, x]
Error Failure - Error
10.61#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}-e^{-x}\cos@{x-\frac{\pi}{8}}\right)}
\Kelvinber{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}-e^{-x}\cos@{x-\frac{\pi}{8}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\frac{1}{2})+k+1)} > 0}
KelvinBer((1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*cos(x +(Pi)/(8))- exp(- x)*cos(x -(Pi)/(8)))
KelvinBer[Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Cos[x +Divide[Pi,8]]- Exp[- x]*Cos[x -Divide[Pi,8]])
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.61#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}+\,e^{-x}\sin@{x-\frac{\pi}{8}}\right)}
\Kelvinbei{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}+\,e^{-x}\sin@{x-\frac{\pi}{8}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinBei((1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*sin(x +(Pi)/(8))+ exp(- x)*sin(x -(Pi)/(8)))
KelvinBei[Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Sin[x +Divide[Pi,8]]+ Exp[- x]*Sin[x -Divide[Pi,8]])
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
10.61#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{-\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}-e^{-x}\sin@{x-\frac{\pi}{8}}\right)}
\Kelvinber{-\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}-e^{-x}\sin@{x-\frac{\pi}{8}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-\frac{1}{2})+k+1)} > 0}
KelvinBer(-(1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*sin(x +(Pi)/(8))- exp(- x)*sin(x -(Pi)/(8)))
KelvinBer[-Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Sin[x +Divide[Pi,8]]- Exp[- x]*Sin[x -Divide[Pi,8]])
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
10.61#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{-\frac{1}{2}}@{x\sqrt{2}} = -\frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}+e^{-x}\cos@{x-\frac{\pi}{8}}\right)}
\Kelvinbei{-\frac{1}{2}}@{x\sqrt{2}} = -\frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}+e^{-x}\cos@{x-\frac{\pi}{8}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinBei(-(1)/(2), x*sqrt(2)) = -((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*cos(x +(Pi)/(8))+ exp(- x)*cos(x -(Pi)/(8)))
KelvinBei[-Divide[1,2], x*Sqrt[2]] == -Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Cos[x +Divide[Pi,8]]+ Exp[- x]*Cos[x -Divide[Pi,8]])
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
10.61.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{\frac{1}{2}}@{x\sqrt{2}} = \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}}}
\Kelvinker{\frac{1}{2}}@{x\sqrt{2}} = \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKer((1)/(2), x*sqrt(2)) = KelvinKei(-(1)/(2), x*sqrt(2))
KelvinKer[Divide[1,2], x*Sqrt[2]] == KelvinKei[-Divide[1,2], x*Sqrt[2]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 3]
10.61.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\sin@{x-\frac{\pi}{8}}}
\Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\sin@{x-\frac{\pi}{8}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKei(-(1)/(2), x*sqrt(2)) = - (2)^(-(3)/(4))*sqrt((Pi)/(x))*exp(- x)*sin(x -(Pi)/(8))
KelvinKei[-Divide[1,2], x*Sqrt[2]] == - (2)^(-Divide[3,4])*Sqrt[Divide[Pi,x]]*Exp[- x]*Sin[x -Divide[Pi,8]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.61.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{\frac{1}{2}}@{x\sqrt{2}} = -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}}}
\Kelvinkei{\frac{1}{2}}@{x\sqrt{2}} = -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKei((1)/(2), x*sqrt(2)) = - KelvinKer(-(1)/(2), x*sqrt(2))
KelvinKei[Divide[1,2], x*Sqrt[2]] == - KelvinKer[-Divide[1,2], x*Sqrt[2]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 3]
10.61.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\cos@{x-\frac{\pi}{8}}}
-\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\cos@{x-\frac{\pi}{8}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
- KelvinKer(-(1)/(2), x*sqrt(2)) = - (2)^(-(3)/(4))*sqrt((Pi)/(x))*exp(- x)*cos(x -(Pi)/(8))
- KelvinKer[-Divide[1,2], x*Sqrt[2]] == - (2)^(-Divide[3,4])*Sqrt[Divide[Pi,x]]*Exp[- x]*Cos[x -Divide[Pi,8]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.63#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{\nu-1}(x)+f_{\nu+1}(x) = -(\nu\sqrt{2}/x)\left(f_{\nu}(x)-g_{\nu}(x)\right)}
f_{\nu-1}(x)+f_{\nu+1}(x) = -(\nu\sqrt{2}/x)\left(f_{\nu}(x)-g_{\nu}(x)\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
f[nu - 1](x)+ f[nu + 1](x) = -(nu*sqrt(2)/x)*(f[nu](x)- g[nu](x))
Subscript[f, \[Nu]- 1][x]+ Subscript[f, \[Nu]+ 1][x] == -(\[Nu]*Sqrt[2]/x)*(Subscript[f, \[Nu]][x]- Subscript[g, \[Nu]][x])
Skipped - no semantic math Skipped - no semantic math - -
10.63#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2}\Kelvinber{}'@@{x} = \Kelvinber{1}@@{x}+\Kelvinbei{1}@@{x}}
\sqrt{2}\Kelvinber{}'@@{x} = \Kelvinber{1}@@{x}+\Kelvinbei{1}@@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1+k+1)} > 0}
sqrt(2)*diff( KelvinBer(, x), x$(1) ) = KelvinBer(1, x)+ KelvinBei(1, x)
Sqrt[2]*D[KelvinBer[, x], {x, 1}] == KelvinBer[1, x]+ KelvinBei[1, x]
Error Failure -
Failed [3 / 3]
Result: Plus[0.297000428957679, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 1.5]], KelvinBei[Plus[1.0, Null], 1.5], Times[-1.0, KelvinBer[Plus[-1.0, Null], 1.5]], KelvinBer[Plus[1.0, Null], 1.5]]]]
Test Values: {Rule[x, 1.5]}

Result: Plus[0.011047944038096752, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 0.5]], KelvinBei[Plus[1.0, Null], 0.5], Times[-1.0, KelvinBer[Plus[-1.0, Null], 0.5]], KelvinBer[Plus[1.0, Null], 0.5]]]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
10.63#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2}\Kelvinbei{}'@@{x} = -\Kelvinber{1}x+\Kelvinbei{1}x}
\sqrt{2}\Kelvinbei{}'@@{x} = -\Kelvinber{1}x+\Kelvinbei{1}x
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1+k+1)} > 0}
sqrt(2)*diff( KelvinBei(, x), x$(1) ) = - KelvinBer(1, x)+ KelvinBei(1, x)
Sqrt[2]*D[KelvinBei[, x], {x, 1}] == - KelvinBer[1, x]+ KelvinBei[1, x]
Error Failure -
Failed [3 / 3]
Result: Plus[-1.0327304069618592, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 1.5]], KelvinBei[Plus[1.0, Null], 1.5], KelvinBer[Plus[-1.0, Null], 1.5], Times[-1.0, KelvinBer[Plus[1.0, Null], 1.5]]]]]
Test Values: {Rule[x, 1.5]}

Result: Plus[-0.35343830347212746, Times[0.35355339059327373, Plus[Times[-1.0, KelvinBei[Plus[-1.0, Null], 0.5]], KelvinBei[Plus[1.0, Null], 0.5], KelvinBer[Plus[-1.0, Null], 0.5], Times[-1.0, KelvinBer[Plus[1.0, Null], 0.5]]]]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
10.63#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2}\Kelvinker{}'@@{x} = \Kelvinker{1}x+\Kelvinkei{1}x}
\sqrt{2}\Kelvinker{}'@@{x} = \Kelvinker{1}x+\Kelvinkei{1}x
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sqrt(2)*diff( KelvinKer(, x), x$(1) ) = KelvinKer(1, x)+ KelvinKei(1, x)
Sqrt[2]*D[KelvinKer[, x], {x, 1}] == KelvinKer[1, x]+ KelvinKei[1, x]
Error Failure -
Failed [3 / 3]
Result: Plus[0.4160356041812476, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 1.5]], KelvinKei[Plus[1.0, Null], 1.5], Times[-1.0, KelvinKer[Plus[-1.0, Null], 1.5]], KelvinKer[Plus[1.0, Null], 1.5]]]]
Test Values: {Rule[x, 1.5]}

Result: Plus[2.5735854919446126, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 0.5]], KelvinKei[Plus[1.0, Null], 0.5], Times[-1.0, KelvinKer[Plus[-1.0, Null], 0.5]], KelvinKer[Plus[1.0, Null], 0.5]]]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
10.63#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2}\Kelvinkei{}'@@{x} = -\Kelvinker{1}x+\Kelvinkei{1}x}
\sqrt{2}\Kelvinkei{}'@@{x} = -\Kelvinker{1}x+\Kelvinkei{1}x
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sqrt(2)*diff( KelvinKei(, x), x$(1) ) = - KelvinKer(1, x)+ KelvinKei(1, x)
Sqrt[2]*D[KelvinKei[, x], {x, 1}] == - KelvinKer[1, x]+ KelvinKei[1, x]
Error Failure -
Failed [3 / 3]
Result: Plus[-0.418052966151267, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 1.5]], KelvinKei[Plus[1.0, Null], 1.5], KelvinKer[Plus[-1.0, Null], 1.5], Times[-1.0, KelvinKer[Plus[1.0, Null], 1.5]]]]]
Test Values: {Rule[x, 1.5]}

Result: Plus[-0.47122132111956727, Times[0.35355339059327373, Plus[Times[-1.0, KelvinKei[Plus[-1.0, Null], 0.5]], KelvinKei[Plus[1.0, Null], 0.5], KelvinKer[Plus[-1.0, Null], 0.5], Times[-1.0, KelvinKer[Plus[1.0, Null], 0.5]]]]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
10.63#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{\nu+1} = p_{\nu-1}-(4\nu/x)r_{\nu}}
p_{\nu+1} = p_{\nu-1}-(4\nu/x)r_{\nu}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
p[nu + 1] = p[nu - 1]-(4*nu/x)*r[nu]
Subscript[p, \[Nu]+ 1] == Subscript[p, \[Nu]- 1]-(4*\[Nu]/x)*Subscript[r, \[Nu]]
Skipped - no semantic math Skipped - no semantic math - -
10.63#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q_{\nu+1} = -(\nu/x)p_{\nu}+r_{\nu}}
q_{\nu+1} = -(\nu/x)p_{\nu}+r_{\nu}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
q[nu + 1] = -(nu/x)*p[nu]+ r[nu]
Subscript[q, \[Nu]+ 1] == -(\[Nu]/x)*Subscript[p, \[Nu]]+ Subscript[r, \[Nu]]
Skipped - no semantic math Skipped - no semantic math - -
10.63#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r_{\nu+1} = -((\nu+1)/x)p_{\nu+1}+q_{\nu}}
r_{\nu+1} = -((\nu+1)/x)p_{\nu+1}+q_{\nu}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
r[nu + 1] = -((nu + 1)/x)*p[nu + 1]+ q[nu]
Subscript[r, \[Nu]+ 1] == -((\[Nu]+ 1)/x)*Subscript[p, \[Nu]+ 1]+ Subscript[q, \[Nu]]
Skipped - no semantic math Skipped - no semantic math - -
10.63#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s_{\nu} = \tfrac{1}{2}p_{\nu+1}+\tfrac{1}{2}p_{\nu-1}-(\nu^{2}/x^{2})p_{\nu}}
s_{\nu} = \tfrac{1}{2}p_{\nu+1}+\tfrac{1}{2}p_{\nu-1}-(\nu^{2}/x^{2})p_{\nu}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
((diff( KelvinBer(nu, x), x$(1) ))^(2)+(diff( KelvinBei(nu, x), x$(1) ))^(2)) = (1)/(2)*p[nu + 1]+(1)/(2)*p[nu - 1]-((nu)^(2)/(x)^(2))*p[nu]
((D[KelvinBer[\[Nu], x], {x, 1}])^(2)+(D[KelvinBei[\[Nu], x], {x, 1}])^(2)) == Divide[1,2]*Subscript[p, \[Nu]+ 1]+Divide[1,2]*Subscript[p, \[Nu]- 1]-(\[Nu]^(2)/(x)^(2))*Subscript[p, \[Nu]]
Skipped - no semantic math Skipped - no semantic math - -
10.63.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{\nu}s_{\nu} = r_{\nu}^{2}+q_{\nu}^{2}}
p_{\nu}s_{\nu} = r_{\nu}^{2}+q_{\nu}^{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
p[nu]*((diff( KelvinBer(nu, x), x$(1) ))^(2)+(diff( KelvinBei(nu, x), x$(1) ))^(2)) = (r[nu])^(2)+ (q[nu])^(2)
Subscript[p, \[Nu]]*((D[KelvinBer[\[Nu], x], {x, 1}])^(2)+(D[KelvinBei[\[Nu], x], {x, 1}])^(2)) == (Subscript[r, \[Nu]])^(2)+ (Subscript[q, \[Nu]])^(2)
Skipped - no semantic math Skipped - no semantic math - -
10.64.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t}}
\Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0}
KelvinBer(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(cos(x*sin(t)- n*t)*cosh(x*sin(t)), t = 0..Pi)
KelvinBer[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Cos[x*Sin[t]- n*t]*Cosh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out
10.64.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t}}
\Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinBei(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(sin(x*sin(t)- n*t)*sinh(x*sin(t)), t = 0..Pi)
KelvinBei[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Sin[x*Sin[t]- n*t]*Sinh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out
10.65#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\cos@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}}
\Kelvinber{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\cos@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
KelvinBer(nu, x) = ((1)/(2)*x)^(nu)* sum((cos((3)/(4)*nu*Pi +(1)/(2)*k*Pi))/(factorial(k)*GAMMA(nu + k + 1))*((1)/(4)*(x)^(2))^(k), k = 0..infinity)
KelvinBer[\[Nu], x] == (Divide[1,2]*x)^\[Nu]* Sum[Divide[Cos[Divide[3,4]*\[Nu]*Pi +Divide[1,2]*k*Pi],(k)!*Gamma[\[Nu]+ k + 1]]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.65#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\sin@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}}
\Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{\nu}\sum_{k=0}^{\infty}\frac{\sin@{\frac{3}{4}\nu\pi+\frac{1}{2}k\pi}}{k!\EulerGamma@{\nu+k+1}}(\tfrac{1}{4}x^{2})^{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
KelvinBei(nu, x) = ((1)/(2)*x)^(nu)* sum((sin((3)/(4)*nu*Pi +(1)/(2)*k*Pi))/(factorial(k)*GAMMA(nu + k + 1))*((1)/(4)*(x)^(2))^(k), k = 0..infinity)
KelvinBei[\[Nu], x] == (Divide[1,2]*x)^\[Nu]* Sum[Divide[Sin[Divide[3,4]*\[Nu]*Pi +Divide[1,2]*k*Pi],(k)!*Gamma[\[Nu]+ k + 1]]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 30] Successful [Tested: 30]
10.65#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{}@@{x} = 1-\frac{(\frac{1}{4}x^{2})^{2}}{(2!)^{2}}+\frac{(\frac{1}{4}x^{2})^{4}}{(4!)^{2}}-\dotsb}
\Kelvinber{}@@{x} = 1-\frac{(\frac{1}{4}x^{2})^{2}}{(2!)^{2}}+\frac{(\frac{1}{4}x^{2})^{4}}{(4!)^{2}}-\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinBer(, x) = 1 -(((1)/(4)*(x)^(2))^(2))/((factorial(2))^(2))+(((1)/(4)*(x)^(2))^(4))/((factorial(4))^(2))- ..
KelvinBer[, x] == 1 -Divide[(Divide[1,4]*(x)^(2))^(2),((2)!)^(2)]+Divide[(Divide[1,4]*(x)^(2))^(4),((4)!)^(2)]- \[Ellipsis]
Error Failure -
Failed [3 / 3]
Result: Plus[-0.921072244644165, …, KelvinBer[Null, 1.5]]
Test Values: {Rule[x, 1.5]}

Result: Plus[-0.9990234639909532, …, KelvinBer[Null, 0.5]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
10.65#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{}@@{x} = \tfrac{1}{4}x^{2}-\frac{(\frac{1}{4}x^{2})^{3}}{(3!)^{2}}+\frac{(\frac{1}{4}x^{2})^{5}}{(5!)^{2}}-\dotsi}
\Kelvinbei{}@@{x} = \tfrac{1}{4}x^{2}-\frac{(\frac{1}{4}x^{2})^{3}}{(3!)^{2}}+\frac{(\frac{1}{4}x^{2})^{5}}{(5!)^{2}}-\dotsi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinBei(, x) = (1)/(4)*(x)^(2)-(((1)/(4)*(x)^(2))^(3))/((factorial(3))^(2))+(((1)/(4)*(x)^(2))^(5))/((factorial(5))^(2))- ..
KelvinBei[, x] == Divide[1,4]*(x)^(2)-Divide[(Divide[1,4]*(x)^(2))^(3),((3)!)^(2)]+Divide[(Divide[1,4]*(x)^(2))^(5),((5)!)^(2)]- \[Ellipsis]
Error Failure -
Failed [3 / 3]
Result: Plus[-0.5575600630044937, …, KelvinBei[Null, 1.5]]
Test Values: {Rule[x, 1.5]}

Result: Plus[-0.06249321838219961, …, KelvinBei[Null, 0.5]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
10.65.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{n}@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\cos@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}-\ln@{\tfrac{1}{2}x}\Kelvinber{n}@@{x}+\tfrac{1}{4}\pi\Kelvinbei{n}@@{x}+\tfrac{1}{2}(\tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\digamma@{k+1}+\digamma@{n+k+1}}{k!(n+k)!}\cos@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}}
\Kelvinker{n}@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\cos@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}-\ln@{\tfrac{1}{2}x}\Kelvinber{n}@@{x}+\tfrac{1}{4}\pi\Kelvinbei{n}@@{x}+\tfrac{1}{2}(\tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\digamma@{k+1}+\digamma@{n+k+1}}{k!(n+k)!}\cos@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0}
KelvinKer(n, x) = (1)/(2)*((1)/(2)*x)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*cos((3)/(4)*n*Pi +(1)/(2)*k*Pi)*((1)/(4)*(x)^(2))^(k), k = 0..n - 1)- ln((1)/(2)*x)*KelvinBer(n, x)+(1)/(4)*Pi*KelvinBei(n, x)+(1)/(2)*((1)/(2)*x)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))/(factorial(k)*factorial(n + k))*cos((3)/(4)*n*Pi +(1)/(2)*k*Pi)*((1)/(4)*(x)^(2))^(k), k = 0..infinity)
KelvinKer[n, x] == Divide[1,2]*(Divide[1,2]*x)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*Cos[Divide[3,4]*n*Pi +Divide[1,2]*k*Pi]*(Divide[1,4]*(x)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]- Log[Divide[1,2]*x]*KelvinBer[n, x]+Divide[1,4]*Pi*KelvinBei[n, x]+Divide[1,2]*(Divide[1,2]*x)^(n)* Sum[Divide[PolyGamma[k + 1]+ PolyGamma[n + k + 1],(k)!*(n + k)!]*Cos[Divide[3,4]*n*Pi +Divide[1,2]*k*Pi]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out
Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5]}

... skip entries to safe data
10.65.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{n}@@{x} = -\tfrac{1}{2}(\tfrac{1}{2}x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\sin@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}-\ln@{\tfrac{1}{2}x}\Kelvinbei{n}@@{x}-\tfrac{1}{4}\pi\Kelvinber{n}@@{x}+\tfrac{1}{2}(\tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\digamma@{k+1}+\digamma@{n+k+1}}{k!(n+k)!}\sin@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}}
\Kelvinkei{n}@@{x} = -\tfrac{1}{2}(\tfrac{1}{2}x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\sin@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}-\ln@{\tfrac{1}{2}x}\Kelvinbei{n}@@{x}-\tfrac{1}{4}\pi\Kelvinber{n}@@{x}+\tfrac{1}{2}(\tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\digamma@{k+1}+\digamma@{n+k+1}}{k!(n+k)!}\sin@{\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi}(\tfrac{1}{4}x^{2})^{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0}
KelvinKei(n, x) = -(1)/(2)*((1)/(2)*x)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*sin((3)/(4)*n*Pi +(1)/(2)*k*Pi)*((1)/(4)*(x)^(2))^(k), k = 0..n - 1)- ln((1)/(2)*x)*KelvinBei(n, x)-(1)/(4)*Pi*KelvinBer(n, x)+(1)/(2)*((1)/(2)*x)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))/(factorial(k)*factorial(n + k))*sin((3)/(4)*n*Pi +(1)/(2)*k*Pi)*((1)/(4)*(x)^(2))^(k), k = 0..infinity)
KelvinKei[n, x] == -Divide[1,2]*(Divide[1,2]*x)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*Sin[Divide[3,4]*n*Pi +Divide[1,2]*k*Pi]*(Divide[1,4]*(x)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]- Log[Divide[1,2]*x]*KelvinBei[n, x]-Divide[1,4]*Pi*KelvinBer[n, x]+Divide[1,2]*(Divide[1,2]*x)^(n)* Sum[Divide[PolyGamma[k + 1]+ PolyGamma[n + k + 1],(k)!*(n + k)!]*Sin[Divide[3,4]*n*Pi +Divide[1,2]*k*Pi]*(Divide[1,4]*(x)^(2))^(k), {k, 0, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out
Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[n, 1], Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[n, 2], Rule[x, 1.5]}

... skip entries to safe data
10.65#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinker{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinber{}@@{x}+\tfrac{1}{4}\pi\Kelvinbei{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+1}}{((2k)!)^{2}}(\tfrac{1}{4}x^{2})^{2k}}
\Kelvinker{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinber{}@@{x}+\tfrac{1}{4}\pi\Kelvinbei{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+1}}{((2k)!)^{2}}(\tfrac{1}{4}x^{2})^{2k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKer(, x) = - ln((1)/(2)*x)*KelvinBer(, x)+(1)/(4)*Pi*KelvinBei(, x)+ sum((- 1)^(k)*(Psi(2*k + 1))/((factorial(2*k))^(2))*((1)/(4)*(x)^(2))^(2*k), k = 0..infinity)
KelvinKer[, x] == - Log[Divide[1,2]*x]*KelvinBer[, x]+Divide[1,4]*Pi*KelvinBei[, x]+ Sum[(- 1)^(k)*Divide[PolyGamma[2*k + 1],((2*k)!)^(2)]*(Divide[1,4]*(x)^(2))^(2*k), {k, 0, Infinity}, GenerateConditions->None]
Error Aborted - Skipped - Because timed out
10.65#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinkei{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinbei{}@@{x}-\tfrac{1}{4}\pi\Kelvinber{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+2}}{((2k+1)!)^{2}}(\tfrac{1}{4}x^{2})^{2k+1}}
\Kelvinkei{}@@{x} = -\ln@{\tfrac{1}{2}x}\Kelvinbei{}@@{x}-\tfrac{1}{4}\pi\Kelvinber{}@@{x}+\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{2k+2}}{((2k+1)!)^{2}}(\tfrac{1}{4}x^{2})^{2k+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
KelvinKei(, x) = - ln((1)/(2)*x)*KelvinBei(, x)-(1)/(4)*Pi*KelvinBer(, x)+ sum((- 1)^(k)*(Psi(2*k + 2))/((factorial(2*k + 1))^(2))*((1)/(4)*(x)^(2))^(2*k + 1), k = 0..infinity)
KelvinKei[, x] == - Log[Divide[1,2]*x]*KelvinBei[, x]-Divide[1,4]*Pi*KelvinBer[, x]+ Sum[(- 1)^(k)*Divide[PolyGamma[2*k + 2],((2*k + 1)!)^(2)]*(Divide[1,4]*(x)^(2))^(2*k + 1), {k, 0, Infinity}, GenerateConditions->None]
Error Failure -
Failed [3 / 3]
Result: Plus[-0.23161280473545226, Times[-1.0, KelvinBer[Null, 1.5]], KelvinKei[Null, 1.5]]
Test Values: {Rule[x, 1.5]}

Result: Plus[-0.02641550246351669, Times[-1.0, KelvinBer[Null, 0.5]], KelvinKei[Null, 0.5]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
10.65.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x} = (\tfrac{1}{2}x)^{2\nu}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}}
\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x} = (\tfrac{1}{2}x)^{2\nu}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu+2k+1)} > 0}
(KelvinBer(nu, x))^(2)+ (KelvinBei(nu, x))^(2) = ((1)/(2)*x)^(2*nu)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 1))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity)
(KelvinBer[\[Nu], x])^(2)+ (KelvinBei[\[Nu], x])^(2) == (Divide[1,2]*x)^(2*\[Nu])* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 1]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 30]
10.65.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{2\nu+1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+2}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}}
\Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x} = (\tfrac{1}{2}x)^{2\nu+1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+2}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu+2k+2)} > 0}
KelvinBer(nu, x)*diff( KelvinBei(nu, x), x$(1) )- diff( KelvinBer(nu, x), x$(1) )*KelvinBei(nu, x) = ((1)/(2)*x)^(2*nu + 1)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 2))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity)
KelvinBer[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}]- D[KelvinBer[\[Nu], x], {x, 1}]*KelvinBei[\[Nu], x] == (Divide[1,2]*x)^(2*\[Nu]+ 1)* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 2]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Successful
Failed [21 / 30]
Result: .7271930e-3+.45983036e-2*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: -.41528503e-2+.322695404e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 2}

... skip entries to safe data
Failed [3 / 30]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[ν, -2]}

... skip entries to safe data
10.65.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}\Kelvinber{\nu}'@@{x}+\Kelvinbei{\nu}@@{x}\Kelvinbei{\nu}'@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{2\nu-1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}}
\Kelvinber{\nu}@@{x}\Kelvinber{\nu}'@@{x}+\Kelvinbei{\nu}@@{x}\Kelvinbei{\nu}'@@{x} = \tfrac{1}{2}(\tfrac{1}{2}x)^{2\nu-1}\sum_{k=0}^{\infty}\frac{1}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu+2k)} > 0}
KelvinBer(nu, x)*diff( KelvinBer(nu, x), x$(1) )+ KelvinBei(nu, x)*diff( KelvinBei(nu, x), x$(1) ) = (1)/(2)*((1)/(2)*x)^(2*nu - 1)* sum((1)/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity)
KelvinBer[\[Nu], x]*D[KelvinBer[\[Nu], x], {x, 1}]+ KelvinBei[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}] == Divide[1,2]*(Divide[1,2]*x)^(2*\[Nu]- 1)* Sum[Divide[1,Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Successful
Failed [25 / 30]
Result: .71978298e-2-.3037583875e-1*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: .607273780e-1-.1071579728*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 2}

... skip entries to safe data
Failed [3 / 30]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[ν, -2]}

... skip entries to safe data
10.65.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\Kelvinber{\nu}'@@{x}\right)^{2}+\left(\Kelvinbei{\nu}'@@{x}\right)^{2} = (\tfrac{1}{2}x)^{2\nu-2}\sum_{k=0}^{\infty}\frac{2k^{2}+2\nu k+\frac{1}{4}\nu^{2}}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}}
\left(\Kelvinber{\nu}'@@{x}\right)^{2}+\left(\Kelvinbei{\nu}'@@{x}\right)^{2} = (\tfrac{1}{2}x)^{2\nu-2}\sum_{k=0}^{\infty}\frac{2k^{2}+2\nu k+\frac{1}{4}\nu^{2}}{\EulerGamma@{\nu+k+1}\EulerGamma@{\nu+2k+1}}\frac{(\frac{1}{4}x^{2})^{2k}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\nu+2k+1)} > 0}
(diff( KelvinBer(nu, x), x$(1) ))^(2)+(diff( KelvinBei(nu, x), x$(1) ))^(2) = ((1)/(2)*x)^(2*nu - 2)* sum((2*(k)^(2)+ 2*nu*k +(1)/(4)*(nu)^(2))/(GAMMA(nu + k + 1)*GAMMA(nu + 2*k + 1))*(((1)/(4)*(x)^(2))^(2*k))/(factorial(k)), k = 0..infinity)
(D[KelvinBer[\[Nu], x], {x, 1}])^(2)+(D[KelvinBei[\[Nu], x], {x, 1}])^(2) == (Divide[1,2]*x)^(2*\[Nu]- 2)* Sum[Divide[2*(k)^(2)+ 2*\[Nu]*k +Divide[1,4]*\[Nu]^(2),Gamma[\[Nu]+ k + 1]*Gamma[\[Nu]+ 2*k + 1]]*Divide[(Divide[1,4]*(x)^(2))^(2*k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Successful
Failed [3 / 30]
Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 3/2}

Result: Float(undefined)+Float(undefined)*I
Test Values: {nu = -2, x = 1/2}

... skip entries to safe data
Failed [3 / 30]
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[ν, -2]}

... skip entries to safe data
10.66.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!}}
\Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
KelvinBer(nu, x)+ I*KelvinBei(nu, x) = sum((exp((3*nu + k)*Pi*I/4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity)
KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == Sum[Divide[Exp[(3*\[Nu]+ k)*Pi*I/4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [30 / 30]
Result: Plus[Complex[-0.12257968900025018, 0.2735107661041647], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.3467793075651209, -0.08562995402477025], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.66.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/4}x^{k}\modBesselI{\nu+k}@{x}}{2^{k/2}k!}}
\sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/4}x^{k}\modBesselI{\nu+k}@{x}}{2^{k/2}k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
sum((exp((3*nu + k)*Pi*I/4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity) = sum((exp((3*nu + 3*k)*Pi*I/4)*(x)^(k)* BesselI(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity)
Sum[Divide[Exp[(3*\[Nu]+ k)*Pi*I/4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None] == Sum[Divide[Exp[(3*\[Nu]+ 3*k)*Pi*I/4]*(x)^(k)* BesselI[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [30 / 30]
Result: Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.66#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k}@{x}\modBesselI{2k}@{x}}
\Kelvinber{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k}@{x}\modBesselI{2k}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+2k)+k+1)} > 0, \realpart@@{(n+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0}
KelvinBer(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k, x)*BesselI(2*k, x), k = - infinity..infinity)
KelvinBer[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k, x]*BesselI[2*k, x], {k, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out
10.66#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k+1}@{x}\modBesselI{2k+1}@{x}}
\Kelvinbei{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k+1}@{x}\modBesselI{2k+1}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+2k+1)+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0}
KelvinBei(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k + 1, x)*BesselI(2*k + 1, x), k = - infinity..infinity)
KelvinBei[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k + 1, x]*BesselI[2*k + 1, x], {k, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out
10.68#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodM{\nu}@{x} = (\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x})^{\ifrac{1}{2}}}
\HankelmodM{\nu}@{x} = (\Kelvinber{\nu}^{2}@@{x}+\Kelvinbei{\nu}^{2}@@{x})^{\ifrac{1}{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
Error
Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2] == ((KelvinBer[\[Nu], x])^(2)+ (KelvinBei[\[Nu], x])^(2))^(Divide[1,2])
Missing Macro Error Successful - Successful [Tested: 30]
10.68#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodderivN{\nu}@{x} = (\Kelvinker{\nu}^{2}@@{x}+\Kelvinkei{\nu}^{2}@@{x})^{\ifrac{1}{2}}}
\HankelmodderivN{\nu}@{x} = (\Kelvinker{\nu}^{2}@@{x}+\Kelvinkei{\nu}^{2}@@{x})^{\ifrac{1}{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2] == ((KelvinKer[\[Nu], x])^(2)+ (KelvinKei[\[Nu], x])^(2))^(Divide[1,2])
Missing Macro Error Successful - Successful [Tested: 30]
10.68#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodM{-n}@{x} = \HankelmodM{n}@{x}}
\HankelmodM{-n}@{x} = \HankelmodM{n}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[KelvinBer[- n, x]^2 + KelvinBei[- n, x]^2] == Sqrt[KelvinBer[n, x]^2 + KelvinBei[n, x]^2]
Missing Macro Error Failure - Successful [Tested: 9]
10.68#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodderivN{-\nu}@{x} = \HankelmodderivN{\nu}@{x}}
\HankelmodderivN{-\nu}@{x} = \HankelmodderivN{\nu}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Sqrt[KelvinKer[- \[Nu], x]^2 + KelvinKei[- \[Nu], x]^2] == Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2]
Missing Macro Error Failure - Successful [Tested: 30]
10.71.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x^{1+\nu}f_{\nu}\diff{x} = -\frac{x^{1+\nu}}{\sqrt{2}}(f_{\nu+1}-g_{\nu+1})}
\int x^{1+\nu}f_{\nu}\diff{x} = -\frac{x^{1+\nu}}{\sqrt{2}}(f_{\nu+1}-g_{\nu+1})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int((x)^(1 + nu)* f[nu], x) = -((x)^(1 + nu))/(sqrt(2))*(f[nu + 1]- g[nu + 1])
Integrate[(x)^(1 + \[Nu])* Subscript[f, \[Nu]], x, GenerateConditions->None] == -Divide[(x)^(1 + \[Nu]),Sqrt[2]]*(Subscript[f, \[Nu]+ 1]- Subscript[g, \[Nu]+ 1])
Failure Failure
Failed [300 / 300]
Result: .9346151411+.5776724966*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I}

Result: 3.061934630+.4518721345*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.9346151408625077, 0.5776724967688012]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[3.061934629891139, 0.45187213490403344]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.71.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x^{1-\nu}f_{\nu}\diff{x} = \frac{x^{1-\nu}}{\sqrt{2}}(f_{\nu-1}-g_{\nu-1})}
\int x^{1-\nu}f_{\nu}\diff{x} = \frac{x^{1-\nu}}{\sqrt{2}}(f_{\nu-1}-g_{\nu-1})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int((x)^(1 - nu)* f[nu], x) = ((x)^(1 - nu))/(sqrt(2))*(f[nu - 1]- g[nu - 1])
Integrate[(x)^(1 - \[Nu])* Subscript[f, \[Nu]], x, GenerateConditions->None] == Divide[(x)^(1 - \[Nu]),Sqrt[2]]*(Subscript[f, \[Nu]- 1]- Subscript[g, \[Nu]- 1])
Failure Failure
Failed [300 / 300]
Result: .9470105611+.8580421171*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu-1] = 1/2*3^(1/2)+1/2*I}

Result: .30703090e-2+1.331056152*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu-1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.9470105613079453, 0.8580421172974921]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0030703089818392426, 1.3310561520338196]
Test Values: {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, Plus[-1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.71.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int xf_{\nu}g_{\nu}\diff{x} = \tfrac{1}{4}x^{2}\left(2f_{\nu}g_{\nu}-f_{\nu-1}g_{\nu+1}-f_{\nu+1}g_{\nu-1}\right)}
\int xf_{\nu}g_{\nu}\diff{x} = \tfrac{1}{4}x^{2}\left(2f_{\nu}g_{\nu}-f_{\nu-1}g_{\nu+1}-f_{\nu+1}g_{\nu-1}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(x*f[nu]*g[nu], x) = (1)/(4)*(x)^(2)*(2*f[nu]*g[nu]- f[nu - 1]*g[nu + 1]- f[nu + 1]*g[nu - 1])
Integrate[x*Subscript[f, \[Nu]]*Subscript[g, \[Nu]], x, GenerateConditions->None] == Divide[1,4]*(x)^(2)*(2*Subscript[f, \[Nu]]*Subscript[g, \[Nu]]- Subscript[f, \[Nu]- 1]*Subscript[g, \[Nu]+ 1]- Subscript[f, \[Nu]+ 1]*Subscript[g, \[Nu]- 1])
Failure Failure
Failed [270 / 300]
Result: .5625000004+.9742785795*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I, g[nu-1] = 1/2*3^(1/2)+1/2*I}

Result: -.2058892896+.7683892900*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, x = 3/2, f[nu] = 1/2*3^(1/2)+1/2*I, f[1+nu] = 1/2*3^(1/2)+1/2*I, f[nu-1] = 1/2*3^(1/2)+1/2*I, g[nu] = 1/2*3^(1/2)+1/2*I, g[1+nu] = 1/2*3^(1/2)+1/2*I, g[nu-1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
10.71.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x(f_{\nu}^{2}-g_{\nu}^{2})\diff{x} = \tfrac{1}{2}x^{2}\left(f_{\nu}^{2}-f_{\nu-1}f_{\nu+1}-g_{\nu}^{2}+g_{\nu-1}g_{\nu+1}\right)}
\int x(f_{\nu}^{2}-g_{\nu}^{2})\diff{x} = \tfrac{1}{2}x^{2}\left(f_{\nu}^{2}-f_{\nu-1}f_{\nu+1}-g_{\nu}^{2}+g_{\nu-1}g_{\nu+1}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(x*((f[nu])^(2)- (g[nu])^(2)), x) = (1)/(2)*(x)^(2)*((f[nu])^(2)- f[nu - 1]*f[nu + 1]- (g[nu])^(2)+ g[nu - 1]*g[nu + 1])
Integrate[x*((Subscript[f, \[Nu]])^(2)- (Subscript[g, \[Nu]])^(2)), x, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((Subscript[f, \[Nu]])^(2)- Subscript[f, \[Nu]- 1]*Subscript[f, \[Nu]+ 1]- (Subscript[g, \[Nu]])^(2)+ Subscript[g, \[Nu]- 1]*Subscript[g, \[Nu]+ 1])
Failure Failure Error Error
10.71#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x\HankelmodM{\nu}^{2}@{x}\diff{x} = x(\Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x})}
\int x\HankelmodM{\nu}^{2}@{x}\diff{x} = x(\Kelvinber{\nu}@@{x}\Kelvinbei{\nu}'@@{x}-\Kelvinber{\nu}'@@{x}\Kelvinbei{\nu}@@{x})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0}
Error
Integrate[x*(Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2])^(2), x, GenerateConditions->None] == x*(KelvinBer[\[Nu], x]*D[KelvinBei[\[Nu], x], {x, 1}]- D[KelvinBer[\[Nu], x], {x, 1}]*KelvinBei[\[Nu], x])
Missing Macro Error Successful - Successful [Tested: 30]
10.71#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x\HankelmodderivN{\nu}^{2}@{x}\diff{x} = x(\Kelvinker{\nu}@@{x}\Kelvinkei{\nu}'@@{x}-\Kelvinker{\nu}'@@{x}\Kelvinkei{\nu}@@{x})}
\int x\HankelmodderivN{\nu}^{2}@{x}\diff{x} = x(\Kelvinker{\nu}@@{x}\Kelvinkei{\nu}'@@{x}-\Kelvinker{\nu}'@@{x}\Kelvinkei{\nu}@@{x})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[x*(Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2])^(2), x, GenerateConditions->None] == x*(KelvinKer[\[Nu], x]*D[KelvinKei[\[Nu], x], {x, 1}]- D[KelvinKer[\[Nu], x], {x, 1}]*KelvinKei[\[Nu], x])
Missing Macro Error Successful - Successful [Tested: 30]
10.73.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{r}\pderiv{}{r}\left(r\pderiv{V}{r}\right)+\frac{1}{r^{2}}\pderiv[2]{V}{\phi}+\pderiv[2]{V}{z} = 0}
\frac{1}{r}\pderiv{}{r}\left(r\pderiv{V}{r}\right)+\frac{1}{r^{2}}\pderiv[2]{V}{\phi}+\pderiv[2]{V}{z} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(r)*diff((r*diff(V, r))+(1)/((r)^(2))*diff(V, [phi$(2)]), r)+ diff(V, [z$(2)]) = 0
Divide[1,r]*D[(r*D[V, r])+Divide[1,(r)^(2)]*D[V, {\[Phi], 2}], r]+ D[V, {z, 2}] == 0
Successful Successful - Successful [Tested: 300]