Verifying DLMF with Maple and Mathematica
This page presents the results of the publication: Comparative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems.
Bug Reports
You can find a PDF with commands that illustrate the encountered errors in Mathematica here: File:Mathematica Bugs Overview.pdf
We provide the same file in the Wolfram system notebook format (NB) here: File:Mathematica Bugs Notebook File.nb
DLMF Translations and Results
In the following, we present the translations of the DLMF equations to the CAS Maple and Mathematica.
DLMF | Formula | Translations Maple |
Translations Mathematica |
Symbolic Evaluation Maple |
Symbolic Evaluation Mathematica |
Numeric Evaluation Maple |
Numeric Evaluation Mathematica |
---|---|---|---|---|---|---|---|
DLMF | 6,623 | 4,114 (62.1%) | 4,713 (71.2%) | 1,084 (26.3%) | 1,235 (26.2%) | 698 (26.7%) | 784 (22.6%) |
By clicking on a chapter of the DLMF below, you will see a large table that looks like this:
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.12.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi(x+1) = e^{\phi(x)}}
\phi(x+1) = e^{\phi(x)} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -1 < x, x < \infty} | phi(x + 1) = exp(phi(x)) |
\[Phi][x + 1] == Exp[\[Phi][x]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
11.5.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}}
\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0} | StruveH(nu, z) - BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)
|
StruveH[\[Nu], z] - BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Failed [15 / 25]
Result: Complex[0.9495382353861556, -0.46093572348323536]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}
Result: Complex[0.7706973036767981, -0.20650772012904173]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}
... skip entries to safe data |
The result tables do not contain every equation with a label in the DLMF since quite a few equations were skipped (see explanations in the paper).
Translations and Evaluations of the Digital Library of Mathematical Functions
- Algebraic and Analytic Methods
- Asymptotic Approximations
- Numerical Methods
- Elementary Functions I & Elementary Functions II
- Gamma Function
- Exponential, Logarithmic, Sine, and Cosine Integrals
- Error Functions, Dawson’s and Fresnel Integrals
- Incomplete Gamma and Related Functions
- Airy and Related Functions
- Bessel Functions I & Bessel Functions II & Bessel Functions III
- Struve and Related Functions
- Parabolic Cylinder Functions
- Confluent Hypergeometric Functions I & Confluent Hypergeometric Functions II
- Legendre and Related Functions I & Legendre and Related Functions II
- Hypergeometric Function I & Hypergeometric Function II
- Generalized Hypergeometric Functions and Meijer G-Function
- q-Hypergeometric and Related Functions
- Orthogonal Polynomials I & Orthogonal Polynomials II
- Elliptic Integrals I & Elliptic Integrals II
- Theta Functions
- Multidimensional Theta Functions
- Jacobian Elliptic Functions
- Weierstrass Elliptic and Modular Functions
- Bernoulli and Euler Polynomials
- Zeta and Related Functions
- Combinatorial Analysis
- Functions of Number Theory
- Mathieu Functions and Hill’s Equation
- Lamé Functions
- Spheroidal Wave Functions
- Heun Functions
- Painlevé Transcendents
- Coulomb Functions
- 3j,6j,9j Symbols
- Functions of Matrix Argument
- Integrals with Coalescing Saddles
Translations and Evaluations Overview Table
Meaning | |
---|---|
2C | Chapter Code |
S | Successful |
% | Percentage |
F | Fail |
P/T | Partially / Totally Failed |
A | Aborted |
E | Errors |
Base | The baseline performance of the translator |
Maple | The CAS Maple 2020 |
Mathematica | The CAS Mathematica |
Symbolic | Numeric | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Formulae | Translations | Maple | Mathematica | Maple | Mathematica | |||||||||||||||||
2C | Total | Base | Maple | Math | S | % | F | S | % | F | S | % | F | [P/T] | A | E | S | % | F | [P/T] | A | E |
1. AL | 227 | 60 | 102 | 103 | 36 | 35.3% | 60 | 34 | 33.0% | 69 | 14 | 23.3% | 35 | [ 12 / 23] | 7 | 4 | 14 | 20.3% | 40 | [ 9 / 31] | 11 | 4 |
2. AS | 136 | 33 | 65 | 65 | 6 | 9.2% | 47 | 6 | 9.2% | 59 | 7 | 14.9% | 33 | [ 5 / 28] | 1 | 5 | 4 | 6.8% | 38 | [ 6 / 32] | 7 | 9 |
3. NM | 53 | 36 | 40 | 40 | 6 | 15.0% | 31 | 5 | 12.5% | 35 | 1 | 3.2% | 27 | [ 9 / 18] | 0 | 2 | 0 | 0.0% | 29 | [ 8 / 21] | 6 | 0 |
4. EL I & II | 569 | 353 | 494 | 564 | 270 | 54.7% | 221 | 304 | 53.9% | 260 | 88 | 39.8% | 126 | [ 64 / 62] | 0 | 6 | 110 | 42.3% | 146 | [ 55 / 91] | 2 | 0 |
5. GA | 144 | 38 | 130 | 139 | 41 | 31.5% | 76 | 65 | 46.8% | 74 | 39 | 51.3% | 25 | [ 12 / 13] | 4 | 8 | 30 | 40.5% | 20 | [ 9 / 11] | 13 | 9 |
6. EX | 107 | 21 | 56 | 77 | 13 | 23.2% | 43 | 18 | 23.4% | 59 | 10 | 23.2% | 31 | [ 13 / 18] | 0 | 2 | 23 | 39.0% | 32 | [ 6 / 26] | 4 | 0 |
7. ER | 149 | 35 | 101 | 120 | 52 | 51.5% | 47 | 45 | 37.5% | 75 | 21 | 44.7% | 23 | [ 10 / 13] | 2 | 1 | 21 | 28.0% | 43 | [ 13 / 30] | 9 | 1 |
8. IG | 204 | 84 | 160 | 163 | 51 | 31.9% | 102 | 65 | 39.9% | 98 | 27 | 26.5% | 61 | [ 20 / 41] | 9 | 5 | 22 | 22.4% | 44 | [ 19 / 25] | 16 | 15 |
9. AI | 235 | 36 | 180 | 179 | 54 | 30.0% | 124 | 69 | 38.5% | 110 | 34 | 27.4% | 75 | [ 41 / 34] | 4 | 8 | 30 | 27.3% | 58 | [ 38 / 20] | 14 | 7 |
10. BS I & II & III | 653 | 143 | 392 | 486 | 80 | 20.4% | 209 | 115 | 23.7% | 371 | 86 | 41.1% | 59 | [ 41 / 18] | 52 | 12 | 90 | 24.2% | 151 | [ 57 / 94] | 92 | 18 |
11. ST | 124 | 48 | 121 | 112 | 39 | 32.2% | 73 | 36 | 32.1% | 76 | 25 | 34.2% | 40 | [ 14 / 26] | 3 | 5 | 21 | 27.6% | 33 | [ 8 / 25] | 10 | 11 |
12. PC | 106 | 33 | 79 | 90 | 25 | 31.6% | 50 | 18 | 20.0% | 72 | 15 | 30.0% | 24 | [ 15 / 9] | 11 | 0 | 13 | 18.0% | 43 | [ 15 / 28] | 12 | 3 |
13. EL I & II | 260 | 126 | 252 | 254 | 75 | 29.8% | 143 | 69 | 27.2% | 185 | 14 | 9.8% | 90 | [ 55 / 35] | 37 | 2 | 23 | 12.4% | 95 | [ 59 / 36] | 45 | 21 |
14. EL I & II | 238 | 166 | 230 | 229 | 30 | 13.0% | 163 | 30 | 13.1% | 199 | 40 | 24.5% | 93 | [ 57 / 36] | 18 | 12 | 59 | 29.6% | 92 | [ 54 / 38] | 41 | 5 |
15. EL I & II | 206 | 148 | 198 | 197 | 46 | 23.2% | 115 | 53 | 26.9% | 144 | 17 | 14.8% | 52 | [ 34 / 18] | 23 | 23 | 23 | 16.0% | 77 | [ 52 / 25] | 29 | 6 |
16. GH | 53 | 20 | 23 | 25 | 3 | 13.0% | 16 | 2 | 8.0% | 23 | 1 | 6.2% | 9 | [ 8 / 1] | 6 | 0 | 1 | 4.3% | 10 | [ 7 / 3] | 9 | 2 |
17. QH | 175 | 1 | 53 | 124 | 23 | 43.4% | 24 | 6 | 4.8% | 118 | 0 | 0.0% | 0 | [ 0 / 0] | 1 | 23 | 13 | 11.0% | 57 | [ 52 / 5] | 39 | 5 |
18. EL I & II | 468 | 132 | 235 | 288 | 65 | 27.6% | 148 | 101 | 35.1% | 185 | 67 | 45.3% | 50 | [ 32 / 18] | 14 | 17 | 45 | 24.3% | 68 | [ 31 / 37] | 52 | 12 |
19. EL I & II | 516 | 103 | 252 | 416 | 39 | 15.5% | 192 | 51 | 12.2% | 365 | 18 | 9.4% | 123 | [ 44 / 79] | 34 | 17 | 18 | 4.9% | 264 | [ 49 / 215] | 61 | 15 |
20. TH | 128 | 52 | 98 | 98 | 10 | 10.2% | 68 | 1 | 1.0% | 97 | 0 | 0.0% | 32 | [ 17 / 15] | 20 | 16 | 33 | 34.0% | 40 | [ 25 / 15] | 24 | 0 |
21. MT | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22. JA | 264 | 115 | 232 | 238 | 46 | 19.8% | 176 | 30 | 12.6% | 206 | 20 | 11.4% | 116 | [ 25 / 91] | 36 | 4 | 22 | 10.7% | 131 | [ 39 / 92] | 51 | 0 |
23. WE | 164 | 7 | 19 | 34 | 1 | 5.3% | 16 | 4 | 11.8% | 30 | 0 | 0.0% | 14 | [ 2 / 12] | 1 | 1 | 2 | 6.7% | 23 | [ 9 / 14] | 2 | 3 |
24. BP | 175 | 31 | 117 | 148 | 15 | 12.8% | 101 | 23 | 15.5% | 125 | 67 | 66.3% | 32 | [ 19 / 13] | 1 | 1 | 78 | 62.4% | 33 | [ 22 / 11] | 14 | 0 |
25. ZE | 154 | 28 | 124 | 120 | 19 | 15.3% | 90 | 48 | 40.0% | 72 | 43 | 47.8% | 29 | [ 18 / 11] | 10 | 8 | 22 | 30.5% | 22 | [ 6 / 16] | 22 | 3 |
26. CM | 136 | 31 | 78 | 87 | 20 | 25.6% | 50 | 19 | 21.8% | 68 | 30 | 60.0% | 11 | [ 8 / 3] | 2 | 7 | 44 | 64.7% | 18 | [ 10 / 8] | 5 | 1 |
27. NT | 79 | 5 | 26 | 15 | 3 | 11.5% | 17 | 6 | 40.0% | 9 | 2 | 11.8% | 6 | [ 3 / 3] | 0 | 8 | 3 | 33.3% | 6 | [ 3 / 3] | 0 | 0 |
28. MA | 267 | 52 | 97 | 110 | 7 | 7.2% | 80 | 7 | 6.4% | 103 | 6 | 7.5% | 32 | [ 12 / 20] | 26 | 15 | 3 | 2.9% | 48 | [ 13 / 35] | 33 | 17 |
29. LA | 111 | 11 | 23 | 22 | 0 | 0.0% | 21 | 0 | 0.0% | 22 | 0 | 0.0% | 19 | [ 2 / 17] | 0 | 2 | 0 | 0.0% | 21 | [ 1 / 20] | 0 | 1 |
30. SW | 71 | 14 | 19 | 26 | 0 | 0.0% | 18 | 0 | 0.0% | 26 | 0 | 0.0% | 18 | [ 5 / 13] | 0 | 0 | 0 | 0.0% | 19 | [ 2 / 17] | 5 | 1 |
31. HE | 35 | 29 | 22 | 15 | 5 | 22.7% | 13 | 2 | 13.3% | 13 | 2 | 15.4% | 10 | [ 0 / 10] | 0 | 1 | 0 | 0.0% | 8 | [ 0 / 8] | 5 | 0 |
32. PT | 67 | 43 | 57 | 57 | 3 | 5.3% | 51 | 3 | 5.3% | 54 | 1 | 2.0% | 44 | [ 7 / 37] | 4 | 2 | 0 | 0.0% | 41 | [ 2 / 39] | 8 | 5 |
33. CW | 108 | 21 | 14 | 11 | 1 | 7.1% | 13 | 0 | 0.0% | 11 | 0 | 0.0% | 5 | [ 2 / 3] | 0 | 8 | 0 | 0.0% | 11 | [ 2 / 9] | 0 | 0 |
34. TJ | 57 | 0 | 1 | 37 | 0 | 0.0% | 1 | 0 | 0.0% | 37 | 0 | 0.0% | 1 | [ 0 / 1] | 0 | 0 | 14 | 37.8% | 10 | [ 5 / 5] | 13 | 0 |
35. FM | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
36. IC | 106 | 12 | 24 | 24 | 0 | 0.0% | 19 | 0 | 0.0% | 24 | 3 | 15.8% | 12 | [ 1 / 11] | 3 | 1 | 3 | 12.5% | 13 | [ 1 / 12] | 1 | 6 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum} | 6545 | 2067 | 4114 | 4713 | 1084 | 26.3% | 2618 | 1235 | 26.2% | 3474 | 698 | 26.7% | 1357 | [607 / 750] | 329 | 226 | 784 | 22.6% | 1784 | [687 / 1097] | 655 | 180 |