Bessel Functions - 10.31 Power Series

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.31.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}}
\modBesselK{n}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}(-\tfrac{1}{4}z^{2})^{k}+(-1)^{n+1}\ln@{\tfrac{1}{2}z}\modBesselI{n}@{z}+(-1)^{n}\tfrac{1}{2}(\tfrac{1}{2}z)^{n}\sum_{k=0}^{\infty}\left(\digamma@{k+1}+\digamma@{n+k+1}\right)\frac{(\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0}
BesselK(n, z) = (1)/(2)*((1)/(2)*z)^(- n)* sum((factorial(n - k - 1))/(factorial(k))*(-(1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(- 1)^(n + 1)* ln((1)/(2)*z)*BesselI(n, z)+(- 1)^(n)*(1)/(2)*((1)/(2)*z)^(n)* sum((Psi(k + 1)+ Psi(n + k + 1))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity)
BesselK[n, z] == Divide[1,2]*(Divide[1,2]*z)^(- n)* Sum[Divide[(n - k - 1)!,(k)!]*(-Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]+(- 1)^(n + 1)* Log[Divide[1,2]*z]*BesselI[n, z]+(- 1)^(n)*Divide[1,2]*(Divide[1,2]*z)^(n)* Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out
Failed [6 / 21]
Result: Plus[0.6666666666666666, Times[-0.6666666666666666, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}

Result: Plus[0.38888888888888906, Times[0.5, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Power[1.5, 2]], [Plus[2, ]]], Times[-1, Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[-4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[-1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[-32, 3], Power[1.5, -6], Plus[3, Times[Rational[-1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}

... skip entries to safe data
10.31.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi}
\modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0}
BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)*BesselI(0, z)+((1)/(4)*(z)^(2))/((factorial(1))^(2))+(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))+ ..
BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)*BesselI[0, z]+Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]+(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-6.985673039111573*^-6, -1.2369744460005716*^-5], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-7.140527721077872*^-6, -1.2101549865001227*^-5], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.31.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}}
\modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{(\mu+k+1)} > 0, \realpart@@{((\mu)+k+1)} > 0}
BesselI(nu, z)*BesselI(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity)
BesselI[\[Nu], z]*BesselI[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out