Bessel Functions - 10.39 Relations to Other Functions
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
10.39#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z}}
\modBesselI{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\frac{1}{2})+k+1)} > 0} | BesselI((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sinh(z)
|
BesselI[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sinh[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z}}
\modBesselI{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cosh@@{z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((-\frac{1}{2})+k+1)} > 0} | BesselI(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* cosh(z)
|
BesselI[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Cosh[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z}}
\modBesselK{\frac{1}{2}}@{z} = \modBesselK{-\frac{1}{2}}@{z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | BesselK((1)/(2), z) = BesselK(-(1)/(2), z)
|
BesselK[Divide[1,2], z] == BesselK[-Divide[1,2], z]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
10.39.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}}
\modBesselK{-\frac{1}{2}}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | BesselK(-(1)/(2), z) = ((Pi)/(2*z))^((1)/(2))* exp(- z)
|
BesselK[-Divide[1,2], z] == (Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}}}
\modBesselK{\frac{1}{4}}@{z} = \pi^{\frac{1}{2}}z^{-\frac{1}{4}}\paraU@{0}{2z^{\frac{1}{2}}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | BesselK((1)/(4), z) = (Pi)^((1)/(2))* (z)^(-(1)/(4))* CylinderU(0, 2*(z)^((1)/(2)))
|
BesselK[Divide[1,4], z] == (Pi)^(Divide[1,2])* (z)^(-Divide[1,4])* ParabolicCylinderD[- 1/2 -(0), 2*(z)^(Divide[1,2])]
|
Successful | Failure | - | Successful [Tested: 7] |
10.39.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right)}
\modBesselK{\frac{3}{4}}@{z} = \tfrac{1}{2}\pi^{\frac{1}{2}}z^{-\frac{3}{4}}\left(\tfrac{1}{2}\paraU@{1}{2z^{\frac{1}{2}}}+\paraU@{-1}{2z^{\frac{1}{2}}}\right) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | BesselK((3)/(4), z) = (1)/(2)*(Pi)^((1)/(2))* (z)^(-(3)/(4))*((1)/(2)*CylinderU(1, 2*(z)^((1)/(2)))+ CylinderU(- 1, 2*(z)^((1)/(2))))
|
BesselK[Divide[3,4], z] == Divide[1,2]*(Pi)^(Divide[1,2])* (z)^(-Divide[3,4])*(Divide[1,2]*ParabolicCylinderD[- 1/2 -(1), 2*(z)^(Divide[1,2])]+ ParabolicCylinderD[- 1/2 -(- 1), 2*(z)^(Divide[1,2])])
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
10.39.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z}}
\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0} | BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(+ z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, - 2*z)
|
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[+ z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, - 2*z]
|
Failure | Successful | Failed [7 / 56] Result: -.800260207-.3396157390*I
Test Values: {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}
Result: -.4588638571-.5759587792*I
Test Values: {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [7 / 56]
Result: Complex[-0.8002602062152042, -0.3396157389151986]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}
Result: Complex[-0.45886385712966904, -0.5759587792371148]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}
... skip entries to safe data |
10.39.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z}}
\modBesselI{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- z}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0} | BesselI(nu, z) = (((1)/(2)*z)^(nu)* exp(- z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*z)
|
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*z]
|
Successful | Successful | Skip - symbolical successful subtest | Failed [7 / 56]
Result: Complex[0.8002602062152032, 0.3396157389151989]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}
Result: Complex[0.4588638571296689, 0.575958779237115]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}
... skip entries to safe data |
10.39.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z}}
\modBesselK{\nu}@{z} = \pi^{\frac{1}{2}}(2z)^{\nu}e^{-z}\KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | BesselK(nu, z) = (Pi)^((1)/(2))*(2*z)^(nu)* exp(- z)*KummerU(nu +(1)/(2), 2*nu + 1, 2*z)
|
BesselK[\[Nu], z] == (Pi)^(Divide[1,2])*(2*z)^\[Nu]* Exp[- z]*HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z]
|
Successful | Successful | - | Successful [Tested: 70] |
10.39.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}}}
\modBesselI{\nu}@{z} = \frac{(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{2z}}{2^{2\nu}\EulerGamma@{\nu+1}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0} | BesselI(nu, z) = ((2*z)^(-(1)/(2))* WhittakerM(0, nu, 2*z))/((2)^(2*nu)* GAMMA(nu + 1))
|
BesselI[\[Nu], z] == Divide[(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], 2*z],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]]
|
Successful | Successful | - | Successful [Tested: 7] |
10.39.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z}}
\modBesselK{\nu}@{z} = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}}\WhittakerconfhyperW{0}{\nu}@{2z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | BesselK(nu, z) = ((Pi)/(2*z))^((1)/(2))* WhittakerW(0, nu, 2*z)
|
BesselK[\[Nu], z] == (Divide[Pi,2*z])^(Divide[1,2])* WhittakerW[0, \[Nu], 2*z]
|
Failure | Failure | Successful [Tested: 70] | Successful [Tested: 70] |
10.39.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}}}
\modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{\tfrac{1}{4}z^{2}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+1)} > 0, \realpart@@{(\nu+k+1)} > 0} | BesselI(nu, z) = (((1)/(2)*z)^(nu))/(GAMMA(nu + 1))*hypergeom([-], [nu + 1], (1)/(4)*(z)^(2))
|
BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+ 1]]*HypergeometricPFQ[{-}, {\[Nu]+ 1}, Divide[1,4]*(z)^(2)]
|
Error | Failure | - | Error |