Bessel Functions - 10.66 Expansions in Series of Bessel Functions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.66.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!}}
\Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
KelvinBer(nu, x)+ I*KelvinBei(nu, x) = sum((exp((3*nu + k)*Pi*I/4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity)
KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == Sum[Divide[Exp[(3*\[Nu]+ k)*Pi*I/4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [30 / 30]
Result: Plus[Complex[-0.12257968900025018, 0.2735107661041647], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.3467793075651209, -0.08562995402477025], Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.66.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/4}x^{k}\modBesselI{\nu+k}@{x}}{2^{k/2}k!}}
\sum_{k=0}^{\infty}\frac{e^{(3\nu+k)\pi i/4}x^{k}\BesselJ{\nu+k}@{x}}{2^{k/2}k!} = \sum_{k=0}^{\infty}\frac{e^{(3\nu+3k)\pi i/4}x^{k}\modBesselI{\nu+k}@{x}}{2^{k/2}k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0}
sum((exp((3*nu + k)*Pi*I/4)*(x)^(k)* BesselJ(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity) = sum((exp((3*nu + 3*k)*Pi*I/4)*(x)^(k)* BesselI(nu + k, x))/((2)^(k/2)* factorial(k)), k = 0..infinity)
Sum[Divide[Exp[(3*\[Nu]+ k)*Pi*I/4]*(x)^(k)* BesselJ[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None] == Sum[Divide[Exp[(3*\[Nu]+ 3*k)*Pi*I/4]*(x)^(k)* BesselI[\[Nu]+ k, x],(2)^(k/2)* (k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [30 / 30]
Result: Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Times[-1.0, NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Times[3, k]], Pi]], BesselI[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], NSum[Times[Power[1.5, k], Power[2, Times[Rational[-1, 2], k]], Power[E, Times[Complex[0, Rational[1, 4]], Plus[Times[3, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], k], Pi]], BesselJ[Plus[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], 1.5], Power[Factorial[k], -1]], {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.66#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k}@{x}\modBesselI{2k}@{x}}
\Kelvinber{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k}@{x}\modBesselI{2k}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+2k)+k+1)} > 0, \realpart@@{(n+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0}
KelvinBer(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k, x)*BesselI(2*k, x), k = - infinity..infinity)
KelvinBer[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k, x]*BesselI[2*k, x], {k, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out
10.66#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k+1}@{x}\modBesselI{2k+1}@{x}}
\Kelvinbei{n}@{x\sqrt{2}} = \sum_{k=-\infty}^{\infty}(-1)^{n+k}\BesselJ{n+2k+1}@{x}\modBesselI{2k+1}@{x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((n+2k+1)+k+1)} > 0, \realpart@@{((2k+1)+k+1)} > 0}
KelvinBei(n, x*sqrt(2)) = sum((- 1)^(n + k)* BesselJ(n + 2*k + 1, x)*BesselI(2*k + 1, x), k = - infinity..infinity)
KelvinBei[n, x*Sqrt[2]] == Sum[(- 1)^(n + k)* BesselJ[n + 2*k + 1, x]*BesselI[2*k + 1, x], {k, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 9] Skipped - Because timed out