Confluent Hypergeometric Functions - 13.25 Products
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
13.25.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{z}\WhittakerconfhyperM{\kappa}{-\mu-1}@{z}+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+\mu)(1+2\mu)^{2}}\WhittakerconfhyperM{\kappa}{\mu+1}@{z}\WhittakerconfhyperM{\kappa}{-\mu}@{z} = 1}
\WhittakerconfhyperM{\kappa}{\mu}@{z}\WhittakerconfhyperM{\kappa}{-\mu-1}@{z}+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+\mu)(1+2\mu)^{2}}\WhittakerconfhyperM{\kappa}{\mu+1}@{z}\WhittakerconfhyperM{\kappa}{-\mu}@{z} = 1 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | WhittakerM(kappa, mu, z)*WhittakerM(kappa, - mu - 1, z)+(((1)/(2)+ mu + kappa)*((1)/(2)+ mu - kappa))/(4*mu*(1 + mu)*(1 + 2*mu)^(2))*WhittakerM(kappa, mu + 1, z)*WhittakerM(kappa, - mu, z) = 1
|
WhittakerM[\[Kappa], \[Mu], z]*WhittakerM[\[Kappa], - \[Mu]- 1, z]+Divide[(Divide[1,2]+ \[Mu]+ \[Kappa])*(Divide[1,2]+ \[Mu]- \[Kappa]),4*\[Mu]*(1 + \[Mu])*(1 + 2*\[Mu])^(2)]*WhittakerM[\[Kappa], \[Mu]+ 1, z]*WhittakerM[\[Kappa], - \[Mu], z] == 1
|
Failure | Failure | Failed [168 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(infinity)+Float(infinity)*I
Test Values: {kappa = 1/2*3^(1/2)+1/2*I, mu = -3/2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [162 / 300]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, -1.5]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, 1.5]}
... skip entries to safe data |