Legendre and Related Functions - 14.21 Definitions and Basic Properties
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
14.21.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+\left(\nu(\nu+1)-\frac{\mu^{2}}{1-z^{2}}\right)w = 0}
\left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+\left(\nu(\nu+1)-\frac{\mu^{2}}{1-z^{2}}\right)w = 0 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (1 - (z)^(2))*diff(w, [z$(2)])- 2*z*diff(w, z)+(nu*(nu + 1)-((mu)^(2))/(1 - (z)^(2)))*w = 0
|
(1 - (z)^(2))*D[w, {z, 2}]- 2*z*D[w, z]+(\[Nu]*(\[Nu]+ 1)-Divide[\[Mu]^(2),1 - (z)^(2)])*w == 0
|
Failure | Failure | Failed [300 / 300] Result: 1.366025404+1.366025404*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: .2113248651+1.366025405*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.3660254037844388, 1.3660254037844386]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.7755575615628914*^-16, -0.9999999999999997]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |