Legendre and Related Functions - 14.30 Spherical and Spheroidal Harmonics

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
14.30.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphharmonicY{l}{m}@{\theta}{\phi} = \left(\frac{(l-m)!(2l+1)}{4\pi(l+m)!}\right)^{1/2}e^{im\phi}\FerrersP[m]{l}@{\cos@@{\theta}}}
\sphharmonicY{l}{m}@{\theta}{\phi} = \left(\frac{(l-m)!(2l+1)}{4\pi(l+m)!}\right)^{1/2}e^{im\phi}\FerrersP[m]{l}@{\cos@@{\theta}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
SphericalY(l, m, theta, phi) = ((factorial(l - m)*(2*l + 1))/(4*Pi*factorial(l + m)))^(1/2)* exp(I*m*phi)*LegendreP(l, m, cos(theta))
SphericalHarmonicY[l, m, \[Theta], \[Phi]] == (Divide[(l - m)!*(2*l + 1),4*Pi*(l + m)!])^(1/2)* Exp[I*m*\[Phi]]*LegendreP[l, m, Cos[\[Theta]]]
Failure Failure
Failed [234 / 300]
Result: .1254512786+.3659009168*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, l = 1, m = 1}

Result: Float(undefined)+Float(undefined)*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, l = 1, m = 2}

... skip entries to safe data
Failed [154 / 300]
Result: Indeterminate
Test Values: {Rule[l, 1], Rule[m, 2], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[l, 1], Rule[m, 3], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
14.30.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphharmonicY{l}{-m}@{\theta}{\phi} = (-1)^{m}\conj{\sphharmonicY{l}{m}@{\theta}{\phi}}}
\sphharmonicY{l}{-m}@{\theta}{\phi} = (-1)^{m}\conj{\sphharmonicY{l}{m}@{\theta}{\phi}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
SphericalY(l, - m, theta, phi) = (- 1)^(m)* conjugate(SphericalY(l, m, theta, phi))
SphericalHarmonicY[l, - m, \[Theta], \[Phi]] == (- 1)^(m)* Conjugate[SphericalHarmonicY[l, m, \[Theta], \[Phi]]]
Failure Failure
Failed [199 / 300]
Result: .651899905e-1+.4007576287*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, l = 1, m = 1}

Result: .5735569852+.2720162074*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, l = 2, m = 1}

... skip entries to safe data
Failed [199 / 300]
Result: Complex[0.4007576286123945, -0.06518999054786037]
Test Values: {Rule[l, 1], Rule[m, 1], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.2720162074039931, -0.5735569852255453]
Test Values: {Rule[l, 2], Rule[m, 1], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
14.30.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphharmonicY{l}{m}@{\pi-\theta}{\phi+\pi} = (-1)^{l}\sphharmonicY{l}{m}@{\theta}{\phi}}
\sphharmonicY{l}{m}@{\pi-\theta}{\phi+\pi} = (-1)^{l}\sphharmonicY{l}{m}@{\theta}{\phi}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
SphericalY(l, m, Pi - theta, phi + Pi) = (- 1)^(l)* SphericalY(l, m, theta, phi)
SphericalHarmonicY[l, m, Pi - \[Theta], \[Phi]+ Pi] == (- 1)^(l)* SphericalHarmonicY[l, m, \[Theta], \[Phi]]
Failure Failure
Failed [114 / 300]
Result: -.3659009168+.1254512785*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, l = 1, m = 1}

Result: .4863638630-.5297060789*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, l = 2, m = 1}

... skip entries to safe data
Successful [Tested: 300]
14.30.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{2\pi}\!\!\int_{0}^{\pi}\conj{\sphharmonicY{l_{1}}{m_{1}}@{\theta}{\phi}}\sphharmonicY{l_{2}}{m_{2}}@{\theta}{\phi}\sin@@{\theta}\diff{\theta}\diff{\phi} = \Kroneckerdelta{l_{1}}{l_{2}}\Kroneckerdelta{m_{1}}{m_{2}}}
\int_{0}^{2\pi}\!\!\int_{0}^{\pi}\conj{\sphharmonicY{l_{1}}{m_{1}}@{\theta}{\phi}}\sphharmonicY{l_{2}}{m_{2}}@{\theta}{\phi}\sin@@{\theta}\diff{\theta}\diff{\phi} = \Kroneckerdelta{l_{1}}{l_{2}}\Kroneckerdelta{m_{1}}{m_{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(int(conjugate(SphericalY(l[1], m[1], theta, phi))*SphericalY(l[2], m[2], theta, phi)*sin(theta), theta = 0..Pi), phi = 0..2*Pi) = KroneckerDelta[l[1], l[2]]*KroneckerDelta[m[1], m[2]]
Integrate[Integrate[Conjugate[SphericalHarmonicY[Subscript[l, 1], Subscript[m, 1], \[Theta], \[Phi]]]*SphericalHarmonicY[Subscript[l, 2], Subscript[m, 2], \[Theta], \[Phi]]*Sin[\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None], {\[Phi], 0, 2*Pi}, GenerateConditions->None] == KroneckerDelta[Subscript[l, 1], Subscript[l, 2]]*KroneckerDelta[Subscript[m, 1], Subscript[m, 2]]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
14.30.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{l}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@{\phi_{1}-\phi_{2}}} = \frac{4\pi}{2l+1}\sum_{m=-l}^{l}\conj{\sphharmonicY{l}{m}@{\theta_{1}}{\phi_{1}}}\sphharmonicY{l}{m}@{\theta_{2}}{\phi_{2}}}
\FerrersP[]{l}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@{\phi_{1}-\phi_{2}}} = \frac{4\pi}{2l+1}\sum_{m=-l}^{l}\conj{\sphharmonicY{l}{m}@{\theta_{1}}{\phi_{1}}}\sphharmonicY{l}{m}@{\theta_{2}}{\phi_{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
LegendreP(l, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi[1]- phi[2])) = (4*Pi)/(2*l + 1)*sum(conjugate(SphericalY(l, m, theta[1], phi[1]))*SphericalY(l, m, theta[2], phi[2]), m = - l..l)
LegendreP[l, Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[Subscript[\[Phi], 1]- Subscript[\[Phi], 2]]] == Divide[4*Pi,2*l + 1]*Sum[Conjugate[SphericalHarmonicY[l, m, Subscript[\[Theta], 1], Subscript[\[Phi], 1]]]*SphericalHarmonicY[l, m, Subscript[\[Theta], 2], Subscript[\[Phi], 2]], {m, - l, l}, GenerateConditions->None]
Aborted Failure Error Skipped - Because timed out
14.30.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\frac{1}{\rho^{2}}\pderiv{}{\rho}\left(\rho^{2}\pderiv{W}{\rho}\right)+\frac{1}{\rho^{2}\sin@@{\theta}}\pderiv{}{\theta}\left(\sin@@{\theta}\pderiv{W}{\theta}\right)}+\frac{1}{\rho^{2}\sin^{2}@@{\theta}}\pderiv[2]{W}{\phi} = 0}
{\frac{1}{\rho^{2}}\pderiv{}{\rho}\left(\rho^{2}\pderiv{W}{\rho}\right)+\frac{1}{\rho^{2}\sin@@{\theta}}\pderiv{}{\theta}\left(\sin@@{\theta}\pderiv{W}{\theta}\right)}+\frac{1}{\rho^{2}\sin^{2}@@{\theta}}\pderiv[2]{W}{\phi} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/((rho)^(2))*diff(((rho)^(2)* diff(W, rho))+(1)/((rho)^(2)* sin(theta))*diff(sin(theta)*diff(W, theta), theta), rho)+(1)/((rho)^(2)* (sin(theta))^(2))*diff(W, [phi$(2)]) = 0
Divide[1,\[Rho]^(2)]*D[(\[Rho]^(2)* D[W, \[Rho]])+Divide[1,\[Rho]^(2)* Sin[\[Theta]]]*D[Sin[\[Theta]]*D[W, \[Theta]], \[Theta]], \[Rho]]+Divide[1,\[Rho]^(2)* (Sin[\[Theta]])^(2)]*D[W, {\[Phi], 2}] == 0
Successful Successful - Successful [Tested: 300]