Elliptic Integrals - 19.28 Integrals of Elliptic Integrals

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.28.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}}
\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0}
int((t)^(sigma - 1)* 0.5*int(1/(sqrt(t+0)*sqrt(t+t)*sqrt(t+1)), t = 0..infinity), t = 0..1) = (1)/(2)*(Beta(sigma, (1)/(2)))^(2)
Integrate[(t)^(\[Sigma]- 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]/Sqrt[1-0], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(Beta[\[Sigma], Divide[1,2]])^(2)
Failure Aborted
Failed [10 / 10]
Result: Float(undefined)+1.162857938*I
Test Values: {sigma = 1/2*3^(1/2)+1/2*I}

Result: Float(undefined)+.9984297790*I
Test Values: {sigma = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
19.28.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}}
\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0}
Error
Integrate[(t)^(\[Sigma]- 1)* Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]), {t, 0, 1}, GenerateConditions->None] == Divide[\[Sigma],4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}}
\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0}
Error
Integrate[(t)^(\[Sigma]- 1)*(1 - t)*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)])/((1-t)*(1-0)^(1/2)), {t, 0, 1}, GenerateConditions->None] == Divide[3,4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}}
\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[3*(EllipticF[ArcCos[Sqrt[x/t]],(t-y)/(t-x)]-EllipticE[ArcCos[Sqrt[x/t]],(t-y)/(t-x)])/((t-y)*(t-x)^(1/2)), {t, (x + y*I), Infinity}, GenerateConditions->None] == 6*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\CarlsonsymellintRD@{x}{y}{v^{2}z+(1-v^{2})p}\diff{v} = \CarlsonsymellintRJ@{x}{y}{z}{p}}
\int_{0}^{1}\CarlsonsymellintRD@{x}{y}{v^{2}z+(1-v^{2})p}\diff{v} = \CarlsonsymellintRJ@{x}{y}{z}{p}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[3*(EllipticF[ArcCos[Sqrt[x/(v)^(2)*(x + y*I)+(1 - (v)^(2))*p]],((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)/((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)]-EllipticE[ArcCos[Sqrt[x/(v)^(2)*(x + y*I)+(1 - (v)^(2))*p]],((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)/((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)])/(((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)*((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)^(1/2)), {v, 0, 1}, GenerateConditions->None] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\CarlsonsymellintRJ@{x}{y}{z}{r^{2}}\diff{r} = \tfrac{3}{2}\pi\CarlsonsymellintRF@{xy}{xz}{yz}}
\int_{0}^{\infty}\CarlsonsymellintRJ@{x}{y}{z}{r^{2}}\diff{r} = \tfrac{3}{2}\pi\CarlsonsymellintRF@{xy}{xz}{yz}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[3*(x + y*I-x)/(x + y*I-(r)^(2))*(EllipticPi[(x + y*I-(r)^(2))/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x], {r, 0, Infinity}, GenerateConditions->None] == Divide[3,2]*Pi*EllipticF[ArcCos[Sqrt[x*y/y*(x + y*I)]],(y*(x + y*I)-x*(x + y*I))/(y*(x + y*I)-x*y)]/Sqrt[y*(x + y*I)-x*y]
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\CarlsonsymellintRJ@{tx}{y}{z}{tp}\diff{t} = \frac{6}{\sqrt{p}}\CarlsonellintRC@{p}{x}\CarlsonsymellintRF@{0}{y}{z}}
\int_{0}^{\infty}\CarlsonsymellintRJ@{tx}{y}{z}{tp}\diff{t} = \frac{6}{\sqrt{p}}\CarlsonellintRC@{p}{x}\CarlsonsymellintRF@{0}{y}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[3*(x + y*I-t*x)/(x + y*I-t*p)*(EllipticPi[(x + y*I-t*p)/(x + y*I-t*x),ArcCos[Sqrt[t*x/x + y*I]],(x + y*I-y)/(x + y*I-t*x)]-EllipticF[ArcCos[Sqrt[t*x/x + y*I]],(x + y*I-y)/(x + y*I-t*x)])/Sqrt[x + y*I-t*x], {t, 0, Infinity}, GenerateConditions->None] == Divide[6,Sqrt[p]]*1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(p)/(x)]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\pi/2}\CarlsonsymellintRF@{\sin^{2}@@{\theta}\cos^{2}@{x+y}}{\sin^{2}@@{\theta}\cos^{2}@{x-y}}{1}\diff{\theta} = \CarlsonsymellintRF@{0}{\cos^{2}@@{x}}{1}\CarlsonsymellintRF@{0}{\cos^{2}@@{y}}{1}}
\int_{0}^{\pi/2}\CarlsonsymellintRF@{\sin^{2}@@{\theta}\cos^{2}@{x+y}}{\sin^{2}@@{\theta}\cos^{2}@{x-y}}{1}\diff{\theta} = \CarlsonsymellintRF@{0}{\cos^{2}@@{x}}{1}\CarlsonsymellintRF@{0}{\cos^{2}@@{y}}{1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(0.5*int(1/(sqrt(t+(sin(theta))^(2)* (cos(x + y))^(2))*sqrt(t+(sin(theta))^(2)* (cos(x - y))^(2))*sqrt(t+1)), t = 0..infinity), theta = 0..Pi/2) = 0.5*int(1/(sqrt(t+0)*sqrt(t+(cos(x))^(2))*sqrt(t+1)), t = 0..infinity)*0.5*int(1/(sqrt(t+0)*sqrt(t+(cos(y))^(2))*sqrt(t+1)), t = 0..infinity)
Integrate[EllipticF[ArcCos[Sqrt[(Sin[\[Theta]])^(2)* (Cos[x + y])^(2)/1]],(1-(Sin[\[Theta]])^(2)* (Cos[x - y])^(2))/(1-(Sin[\[Theta]])^(2)* (Cos[x + y])^(2))]/Sqrt[1-(Sin[\[Theta]])^(2)* (Cos[x + y])^(2)], {\[Theta], 0, Pi/2}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[0/1]],(1-(Cos[x])^(2))/(1-0)]/Sqrt[1-0]*EllipticF[ArcCos[Sqrt[0/1]],(1-(Cos[y])^(2))/(1-0)]/Sqrt[1-0]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.28.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\CarlsonsymellintRF@{(ac+bd)^{2}}{(ad+bc)^{2}}{4abcd\cosh^{2}@@{z}}\diff{z} = \tfrac{1}{2}\CarlsonsymellintRF@{0}{a^{2}}{b^{2}}\CarlsonsymellintRF@{0}{c^{2}}{d^{2}}}
\int_{0}^{\infty}\CarlsonsymellintRF@{(ac+bd)^{2}}{(ad+bc)^{2}}{4abcd\cosh^{2}@@{z}}\diff{z} = \tfrac{1}{2}\CarlsonsymellintRF@{0}{a^{2}}{b^{2}}\CarlsonsymellintRF@{0}{c^{2}}{d^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(0.5*int(1/(sqrt(t+(a*c + b*d)^(2))*sqrt(t+(a*d + b*c)^(2))*sqrt(t+4*a*b*c*d*(cosh(z))^(2))), t = 0..infinity), z = 0..infinity) = (1)/(2)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a)^(2))*sqrt(t+(b)^(2))), t = 0..infinity)*0.5*int(1/(sqrt(t+0)*sqrt(t+(c)^(2))*sqrt(t+(d)^(2))), t = 0..infinity)
Integrate[EllipticF[ArcCos[Sqrt[(a*c + b*d)^(2)/4*a*b*c*d*(Cosh[z])^(2)]],(4*a*b*c*d*(Cosh[z])^(2)-(a*d + b*c)^(2))/(4*a*b*c*d*(Cosh[z])^(2)-(a*c + b*d)^(2))]/Sqrt[4*a*b*c*d*(Cosh[z])^(2)-(a*c + b*d)^(2)], {z, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]/Sqrt[(b)^(2)-0]*EllipticF[ArcCos[Sqrt[0/(d)^(2)]],((d)^(2)-(c)^(2))/((d)^(2)-0)]/Sqrt[(d)^(2)-0]
Error Aborted - Skipped - Because timed out