Jacobian Elliptic Functions - 22.20 Methods of Computation
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
22.20#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{n} = \tfrac{1}{2}\left(a_{n-1}+b_{n-1}\right)}
a_{n} = \tfrac{1}{2}\left(a_{n-1}+b_{n-1}\right) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | a[n] = (1)/(2)*(a[n - 1]+ b[n - 1]) |
Subscript[a, n] == Divide[1,2]*(Subscript[a, n - 1]+ Subscript[b, n - 1]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
22.20#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{n} = \left(a_{n-1}b_{n-1}\right)^{1/2}}
b_{n} = \left(a_{n-1}b_{n-1}\right)^{1/2} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | b[n] = (a[n - 1]*b[n - 1])^(1/2) |
Subscript[b, n] == (Subscript[a, n - 1]*Subscript[b, n - 1])^(1/2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
22.20#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c_{n} = \tfrac{1}{2}\left(a_{n-1}-b_{n-1}\right)}
c_{n} = \tfrac{1}{2}\left(a_{n-1}-b_{n-1}\right) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | c[n] = (1)/(2)*(a[n - 1]- b[n - 1]) |
Subscript[c, n] == Divide[1,2]*(Subscript[a, n - 1]- Subscript[b, n - 1]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
22.20.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi_{N} = 2^{N}a_{N}x}
\phi_{N} = 2^{N}a_{N}x |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | phi[N] = (2)^(N)* a[N]*x |
Subscript[\[Phi], N] == (2)^(N)* Subscript[a, N]*x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
22.20.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi_{n-1} = \frac{1}{2}\left(\phi_{n}+\asin@{\frac{c_{n}}{a_{n}}\sin@@{\phi_{n}}}\right)}
\phi_{n-1} = \frac{1}{2}\left(\phi_{n}+\asin@{\frac{c_{n}}{a_{n}}\sin@@{\phi_{n}}}\right) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | phi[n - 1] = (1)/(2)*(phi[n]+ arcsin((c[n])/(a[n])*sin(phi[n])))
|
Subscript[\[Phi], n - 1] == Divide[1,2]*(Subscript[\[Phi], n]+ ArcSin[Divide[Subscript[c, n],Subscript[a, n]]*Sin[Subscript[\[Phi], n]]])
|
Failure | Failure | Failed [276 / 300] Result: -1.366025404+.3660254040*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, a[n] = 1/2*3^(1/2)+1/2*I, c[n] = 1/2*3^(1/2)+1/2*I, phi[n] = 1/2*3^(1/2)+1/2*I, phi[-1+n] = -1/2+1/2*I*3^(1/2), n = 1}
Result: -1.366025404+.3660254040*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, a[n] = 1/2*3^(1/2)+1/2*I, c[n] = 1/2*3^(1/2)+1/2*I, phi[n] = 1/2*3^(1/2)+1/2*I, phi[-1+n] = -1/2+1/2*I*3^(1/2), n = 2}
... skip entries to safe data |
Failed [276 / 300]
Result: Complex[1.3660254037844384, -0.36602540378443876]
Test Values: {Rule[n, 1], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[1.3660254037844384, -0.36602540378443876]
Test Values: {Rule[n, 2], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[a, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
22.20#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiellsnk@{x}{k} = \sin@@{\phi_{0}}}
\Jacobiellsnk@{x}{k} = \sin@@{\phi_{0}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | JacobiSN(x, k) = sin(phi[0])
|
JacobiSN[x, (k)^2] == Sin[Subscript[\[Phi], 0]]
|
Failure | Failure | Failed [300 / 300] Result: .461679191e-1-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, phi[0] = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -.6784403409-.3375964631*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, phi[0] = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.046167919344728525, -0.33759646322287]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.678440340667692, -0.33759646322287]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.20#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobiellcnk@{x}{k} = \cos@@{\phi_{0}}}
\Jacobiellcnk@{x}{k} = \cos@@{\phi_{0}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | JacobiCN(x, k) = cos(phi[0])
|
JacobiCN[x, (k)^2] == Cos[Subscript[\[Phi], 0]]
|
Failure | Failure | Failed [300 / 300] Result: -.3054469840+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, phi[0] = 1/2*3^(1/2)+1/2*I, k = 1}
Result: .2530246253+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, phi[0] = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.3054469841149447, 0.3969495502290325]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.2530246251336542, 0.3969495502290325]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.20#Ex6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Jacobielldnk@{x}{k} = \frac{\cos@@{\phi_{0}}}{\cos@{\phi_{1}-\phi_{0}}}}
\Jacobielldnk@{x}{k} = \frac{\cos@@{\phi_{0}}}{\cos@{\phi_{1}-\phi_{0}}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | JacobiDN(x, k) = (cos(phi[0]))/(cos(phi[1]- phi[0]))
|
JacobiDN[x, (k)^2] == Divide[Cos[Subscript[\[Phi], 0]],Cos[Subscript[\[Phi], 1]- Subscript[\[Phi], 0]]]
|
Failure | Failure | Failed [300 / 300] Result: -.3054469840+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, phi[0] = 1/2*3^(1/2)+1/2*I, phi[1] = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -1.663077867+.3969495503*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, phi[0] = 1/2*3^(1/2)+1/2*I, phi[1] = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.3054469841149447, 0.3969495502290325]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.6630778670906836, 0.3969495502290325]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ϕ, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
22.20#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle K = \frac{\pi}{2M(1,k^{\prime})}}
K = \frac{\pi}{2M(1,k^{\prime})} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | EllipticK(k) = (Pi)/(2*M(1 ,sqrt(1 - (k)^(2)))) |
EllipticK[(k)^2] == Divide[Pi,2*M[1 ,Sqrt[1 - (k)^(2)]]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |