Weierstrass Elliptic and Modular Functions - 23.6 Relations to Other Functions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.6#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q = e^{i\pi\tau}}
q = e^{i\pi\tau}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
q = exp(I*Pi*tau)
q == Exp[I*Pi*\[Tau]]
Skipped - no semantic math Skipped - no semantic math - -
23.6#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tau = \omega_{3}/\omega_{1}}
\tau = \omega_{3}/\omega_{1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
tau = omega[3]/omega[1]
\[Tau] == Subscript[\[Omega], 3]/Subscript[\[Omega], 1]
Skipped - no semantic math Skipped - no semantic math - -
23.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}}
\eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
eta[1] = -((Pi)^(2))/(12*omega[1])*(diff( JacobiTheta1(0, q), 0$(3) ))/(diff( JacobiTheta1(0, q), 0$(1) ))
Subscript[\[Eta], 1] == -Divide[(Pi)^(2),12*Subscript[\[Omega], 1]]*Divide[D[EllipticTheta[1, 0, q], {0, 3}],D[EllipticTheta[1, 0, q], {0, 1}]]
Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[0.712277344720507, -0.4112335167120565], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[-0.4112335167120564, -0.712277344720507], Power[D[0.0
Test Values: {0.0, 1.0}], -1], D[0.0, {0.0, 3.0}]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[η, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ω, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.6#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}}
\compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(EllipticK(k))^(2) = (EllipticK(k))^(2)
(EllipticK[(k)^2])^(2) == (EllipticK[(k)^2])^(2)
Successful Successful - Successful [Tested: 3]