Weierstrass Elliptic and Modular Functions - 23.8 Trigonometric Series and Products
		
		
		
		Jump to navigation
		Jump to search
		
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple | Symbolic Mathematica | Numeric Maple | Numeric Mathematica | 
|---|---|---|---|---|---|---|---|---|
| 23.8.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta_{1} = \frac{\pi^{2}}{2\omega_{1}}\left(\frac{1}{6}+\sum_{n=1}^{\infty}\csc^{2}@{\frac{n\pi\omega_{3}}{\omega_{1}}}\right)} \eta_{1} = \frac{\pi^{2}}{2\omega_{1}}\left(\frac{1}{6}+\sum_{n=1}^{\infty}\csc^{2}@{\frac{n\pi\omega_{3}}{\omega_{1}}}\right) | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | eta[1] = ((Pi)^(2))/(2*omega[1])*((1)/(6)+ sum((csc((n*Pi*omega[3])/(omega[1])))^(2), n = 1..infinity))
 | Subscript[\[Eta], 1] == Divide[(Pi)^(2),2*Subscript[\[Omega], 1]]*(Divide[1,6]+ Sum[(Csc[Divide[n*Pi*Subscript[\[Omega], 3],Subscript[\[Omega], 1]]])^(2), {n, 1, Infinity}, GenerateConditions->None])
 | Failure | Failure | Skipped - Because timed out | Skipped - Because timed out |