Bernoulli and Euler Polynomials - 24.15 Related Sequences of Numbers

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
24.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2t}{e^{t}+1} = \sum_{n=1}^{\infty}G_{n}\frac{t^{n}}{n!}}
\frac{2t}{e^{t}+1} = \sum_{n=1}^{\infty}G_{n}\frac{t^{n}}{n!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2*t)/(exp(t)+ 1) = sum(G[n]*((t)^(n))/(factorial(n)), n = 1..infinity)
Divide[2*t,Exp[t]+ 1] == Sum[Subscript[G, n]*Divide[(t)^(n),(n)!], {n, 1, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
24.15.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle G_{n} = 2(1-2^{n})\BernoullinumberB{n}}
G_{n} = 2(1-2^{n})\BernoullinumberB{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
G[n] = 2*(1 - (2)^(n))*bernoulli(n)
Subscript[G, n] == 2*(1 - (2)^(n))*BernoulliB[n]
Failure Failure
Failed [30 / 30]
Result: -.1339745960+.5000000000*I
Test Values: {G[n] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: 1.866025404+.5000000000*I
Test Values: {G[n] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.1339745962155613, 0.49999999999999994]
Test Values: {Rule[n, 1], Rule[Subscript[G, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.8660254037844388, 0.49999999999999994]
Test Values: {Rule[n, 2], Rule[Subscript[G, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
24.15.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@@{t} = \sum_{n=0}^{\infty}T_{n}\frac{t^{n}}{n!}}
\tan@@{t} = \sum_{n=0}^{\infty}T_{n}\frac{t^{n}}{n!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
tan(t) = sum(T[n]*((t)^(n))/(factorial(n)), n = 0..infinity)
Tan[t] == Sum[Subscript[T, n]*Divide[(t)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [60 / 60]
Result: -14.29465634-.1115650801*I
Test Values: {t = -3/2, T[n] = 1/2*3^(1/2)+1/2*I}

Result: -13.98985487-.1932363871*I
Test Values: {t = -3/2, T[n] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [60 / 60]
Result: Complex[-14.29465633421075, -0.1115650800742149]
Test Values: {Rule[t, -1.5], Rule[Subscript[T, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-13.989854867097504, -0.1932363870390304]
Test Values: {Rule[t, -1.5], Rule[Subscript[T, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
24.15.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle T_{2n-1} = (-1)^{n-1}\frac{2^{2n}(2^{2n}-1)}{2n}\BernoullinumberB{2n}}
T_{2n-1} = (-1)^{n-1}\frac{2^{2n}(2^{2n}-1)}{2n}\BernoullinumberB{2n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
T[2*n - 1] = (- 1)^(n - 1)*((2)^(2*n)*((2)^(2*n)- 1))/(2*n)*bernoulli(2*n)
Subscript[T, 2*n - 1] == (- 1)^(n - 1)*Divide[(2)^(2*n)*((2)^(2*n)- 1),2*n]*BernoulliB[2*n]
Failure Failure
Failed [10 / 10]
Result: -15.13397460+.5000000000*I
Test Values: {T[2*n-1] = 1/2*3^(1/2)+1/2*I, n = 3}

Result: -16.50000000+.8660254040*I
Test Values: {T[2*n-1] = -1/2+1/2*I*3^(1/2), n = 3}

... skip entries to safe data
Failed [29 / 30]
Result: Complex[-0.1339745962155613, 0.49999999999999994]
Test Values: {Rule[n, 1], Rule[Subscript[T, Plus[-1, Times[2, n]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.1339745962155612, 0.49999999999999994]
Test Values: {Rule[n, 2], Rule[Subscript[T, Plus[-1, Times[2, n]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
24.15.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle T_{2n} = 0}
T_{2n} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
T[2*n] = 0
Subscript[T, 2*n] == 0
Skipped - no semantic math Skipped - no semantic math - -
24.15.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{n} = \sum_{k=0}^{n}(-1)^{k}\frac{k!\StirlingnumberS@{n}{k}}{k+1}}
\BernoullinumberB{n} = \sum_{k=0}^{n}(-1)^{k}\frac{k!\StirlingnumberS@{n}{k}}{k+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
bernoulli(n) = sum((- 1)^(k)*(factorial(k)*Stirling2(n, k))/(k + 1), k = 0..n)
BernoulliB[n] == Sum[(- 1)^(k)*Divide[(k)!*StirlingS2[n, k],k + 1], {k, 0, n}, GenerateConditions->None]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
24.15.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{n} = \sum_{k=0}^{n}(-1)^{k}\binom{n+1}{k+1}\StirlingnumberS@{n+k}{k}\bigg{/}\binom{n+k}{k}}
\BernoullinumberB{n} = \sum_{k=0}^{n}(-1)^{k}\binom{n+1}{k+1}\StirlingnumberS@{n+k}{k}\bigg{/}\binom{n+k}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
bernoulli(n) = sum((- 1)^(k)*binomial(n + 1,k + 1)*Stirling2(n + k, k)/(binomial(n + k,k)), k = 0..n)
BernoulliB[n] == Sum[(- 1)^(k)*Binomial[n + 1,k + 1]*StirlingS2[n + k, k]/(Binomial[n + k,k]), {k, 0, n}, GenerateConditions->None]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
24.15.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}(-1)^{n+k}\Stirlingnumbers@{n+1}{k+1}\BernoullinumberB{k} = \frac{n!}{n+1}}
\sum_{k=0}^{n}(-1)^{n+k}\Stirlingnumbers@{n+1}{k+1}\BernoullinumberB{k} = \frac{n!}{n+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum((- 1)^(n + k)* Stirling1(n + 1, k + 1)*bernoulli(k), k = 0..n) = (factorial(n))/(n + 1)
Sum[(- 1)^(n + k)* StirlingS1[n + 1, k + 1]*BernoulliB[k], {k, 0, n}, GenerateConditions->None] == Divide[(n)!,n + 1]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
24.15.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\left(\frac{5}{9}\right)^{k}\BernoullinumberB{2k}u_{n-2k} = \frac{n}{6}v_{n-1}+\frac{n}{3^{n}}v_{2n-2}}
\sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\left(\frac{5}{9}\right)^{k}\BernoullinumberB{2k}u_{n-2k} = \frac{n}{6}v_{n-1}+\frac{n}{3^{n}}v_{2n-2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(n,2*k)*((5)/(9))^(k)* bernoulli(2*k)*u[n - 2*k], k = 0..floor((n)/(2))) = (n)/(6)*v[n - 1]+(n)/((3)^(n))*v[2*n - 2]
Sum[Binomial[n,2*k]*(Divide[5,9])^(k)* BernoulliB[2*k]*Subscript[u, n - 2*k], {k, 0, Floor[Divide[n,2]]}, GenerateConditions->None] == Divide[n,6]*Subscript[v, n - 1]+Divide[n,(3)^(n)]*Subscript[v, 2*n - 2]
Failure Failure
Failed [300 / 300]
Result: .4330127020+.2500000000*I
Test Values: {u[n-2*k] = 1/2*3^(1/2)+1/2*I, v[n-1] = 1/2*3^(1/2)+1/2*I, v[2*n-2] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: .4650877169+.2685185185*I
Test Values: {u[n-2*k] = 1/2*3^(1/2)+1/2*I, v[n-1] = 1/2*3^(1/2)+1/2*I, v[2*n-2] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.43301270189221935, 0.24999999999999997]
Test Values: {Rule[n, 1], Rule[Subscript[u, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[v, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[v, Plus[-2, Times[2, n]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.46508771684719863, 0.2685185185185185]
Test Values: {Rule[n, 2], Rule[Subscript[u, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[v, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[v, Plus[-2, Times[2, n]]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
24.15.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\left(\frac{5}{4}\right)^{k}\EulernumberE{2k}v_{n-2k} = \frac{1}{2^{n-1}}}
\sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\left(\frac{5}{4}\right)^{k}\EulernumberE{2k}v_{n-2k} = \frac{1}{2^{n-1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(n,2*k)*((5)/(4))^(k)* euler(2*k)*v[n - 2*k], k = 0..floor((n)/(2))) = (1)/((2)^(n - 1))
Sum[Binomial[n,2*k]*(Divide[5,4])^(k)* EulerE[2*k]*Subscript[v, n - 2*k], {k, 0, Floor[Divide[n,2]]}, GenerateConditions->None] == Divide[1,(2)^(n - 1)]
Missing Macro Error Failure -
Failed [29 / 30]
Result: Complex[-0.1339745962155613, 0.49999999999999994]
Test Values: {Rule[n, 1], Rule[Subscript[v, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.7165063509461097, -0.12499999999999999]
Test Values: {Rule[n, 2], Rule[Subscript[v, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data