Combinatorial Analysis - 26.6 Other Lattice Path Numbers

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{m,n=0}^{\infty}D(m,n)x^{m}y^{n} = \frac{1}{1-x-y-xy}}
\sum_{m,n=0}^{\infty}D(m,n)x^{m}y^{n} = \frac{1}{1-x-y-xy}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(sum((sum(binomial(n,k)*binomial(m + n - k,n), k = 0..n))*(x)^(m)* (y)^(n), n = 0..infinity), m = 0..infinity) = (1)/(1 - x - y - x*y)
Sum[Sum[(Sum[Binomial[n,k]*Binomial[m + n - k,n], {k, 0, n}, GenerateConditions->None])*(x)^(m)* (y)^(n), {n, 0, Infinity}, GenerateConditions->None], {m, 0, Infinity}, GenerateConditions->None] == Divide[1,1 - x - y - x*y]
Skipped - no semantic math Skipped - no semantic math - -
26.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}D(n,n)x^{n} = \frac{1}{\sqrt{1-6x+x^{2}}}}
\sum_{n=0}^{\infty}D(n,n)x^{n} = \frac{1}{\sqrt{1-6x+x^{2}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(D(n , n)* (x)^(n), n = 0..infinity) = (1)/(sqrt(1 - 6*x + (x)^(2)))
Sum[D[n , n]* (x)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[1 - 6*x + (x)^(2)]]
Skipped - no semantic math Skipped - no semantic math - -
26.6.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}M(n)x^{n} = \frac{1-x-\sqrt{1-2x-3x^{2}}}{2x^{2}}}
\sum_{n=0}^{\infty}M(n)x^{n} = \frac{1-x-\sqrt{1-2x-3x^{2}}}{2x^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum((sum(((- 1)^(k))/(n + 2 - k)*binomial(n,k)*binomial(2*n + 2 - 2*k,n + 1 - k), k = 0..n))*(x)^(n), n = 0..infinity) = (1 - x -sqrt(1 - 2*x - 3*(x)^(2)))/(2*(x)^(2))
Sum[(Sum[Divide[(- 1)^(k),n + 2 - k]*Binomial[n,k]*Binomial[2*n + 2 - 2*k,n + 1 - k], {k, 0, n}, GenerateConditions->None])*(x)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1 - x -Sqrt[1 - 2*x - 3*(x)^(2)],2*(x)^(2)]
Skipped - no semantic math Skipped - no semantic math - -
26.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n,k=1}^{\infty}N(n,k)x^{n}y^{k} = \frac{1-x-xy-\sqrt{(1-x-xy)^{2}-4x^{2}y}}{2x}}
\sum_{n,k=1}^{\infty}N(n,k)x^{n}y^{k} = \frac{1-x-xy-\sqrt{(1-x-xy)^{2}-4x^{2}y}}{2x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(sum(((1)/(n)*binomial(n,k)*binomial(n,k - 1))*(x)^(n)* (y)^(k), k = 1..infinity), n = 1..infinity) = (1 - x - x*y -sqrt((1 - x - x*y)^(2)- 4*(x)^(2)* y))/(2*x)
Sum[Sum[(Divide[1,n]*Binomial[n,k]*Binomial[n,k - 1])*(x)^(n)* (y)^(k), {k, 1, Infinity}, GenerateConditions->None], {n, 1, Infinity}, GenerateConditions->None] == Divide[1 - x - x*y -Sqrt[(1 - x - x*y)^(2)- 4*(x)^(2)* y],2*x]
Skipped - no semantic math Skipped - no semantic math - -
26.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}r(n)x^{n} = \frac{1-x-\sqrt{1-6x+x^{2}}}{2x}}
\sum_{n=0}^{\infty}r(n)x^{n} = \frac{1-x-\sqrt{1-6x+x^{2}}}{2x}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n \geq 1}
sum((D(n , n)- D(n + 1 , n - 1))*(x)^(n), n = 0..infinity) = (1 - x -sqrt(1 - 6*x + (x)^(2)))/(2*x)
Sum[(D[n , n]- D[n + 1 , n - 1])*(x)^(n), {n, 0, Infinity}, GenerateConditions->None] == Divide[1 - x -Sqrt[1 - 6*x + (x)^(2)],2*x]
Skipped - no semantic math Skipped - no semantic math - -
26.6.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D(m,n) = D(m,n-1)+D(m-1,n)+D(m-1,n-1)}
D(m,n) = D(m,n-1)+D(m-1,n)+D(m-1,n-1)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle m \geq 1, n \geq 1}
(sum(binomial(n,k)*binomial(m + n - k,n), k = 0..n)) = D(m , n - 1)+ D(m - 1 , n)+ D(m - 1 , n - 1)
(Sum[Binomial[n,k]*Binomial[m + n - k,n], {k, 0, n}, GenerateConditions->None]) == D[m , n - 1]+ D[m - 1 , n]+ D[m - 1 , n - 1]
Skipped - no semantic math Skipped - no semantic math - -
26.6.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(n) = M(n-1)+\sum_{k=2}^{n}M(k-2)\,M(n-k)}
M(n) = M(n-1)+\sum_{k=2}^{n}M(k-2)\,M(n-k)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n \geq 2}
(sum(((- 1)^(k))/(n + 2 - k)*binomial(n,k)*binomial(2*n + 2 - 2*k,n + 1 - k), k = 0..n)) = M*(n - 1)+ sum(M*(k - 2)*M*(n - k), k = 2..n)
(Sum[Divide[(- 1)^(k),n + 2 - k]*Binomial[n,k]*Binomial[2*n + 2 - 2*k,n + 1 - k], {k, 0, n}, GenerateConditions->None]) == M*(n - 1)+ Sum[M*(k - 2)*M*(n - k), {k, 2, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -