Combinatorial Analysis - 26.7 Set Partitions: Bell Numbers

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{0} = 1}
\Bellnumber@{0} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BellB(0, 1) = 1
BellB[0] == 1
Successful Successful - Successful [Tested: 1]
26.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n} = \sum_{k=0}^{n}\StirlingnumberS@{n}{k}}
\Bellnumber@{n} = \sum_{k=0}^{n}\StirlingnumberS@{n}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BellB(n, 1) = sum(Stirling2(n, k), k = 0..n)
BellB[n] == Sum[StirlingS2[n, k], {k, 0, n}, GenerateConditions->None]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
26.7.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n} = \sum_{k=1}^{m}\frac{k^{n}}{k!}\sum_{j=0}^{m-k}\frac{(-1)^{j}}{j!}}
\Bellnumber@{n} = \sum_{k=1}^{m}\frac{k^{n}}{k!}\sum_{j=0}^{m-k}\frac{(-1)^{j}}{j!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle m \geq n}
BellB(n, 1) = sum(((k)^(n))/(factorial(k))*sum(((- 1)^(j))/(factorial(j)), j = 0..m - k), k = 1..m)
BellB[n] == Sum[Divide[(k)^(n),(k)!]*Sum[Divide[(- 1)^(j),(j)!], {j, 0, m - k}, GenerateConditions->None], {k, 1, m}, GenerateConditions->None]
Error Failure - Successful [Tested: 6]
26.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n} = \expe^{-1}\sum_{k=1}^{\infty}\frac{k^{n}}{k!}}
\Bellnumber@{n} = \expe^{-1}\sum_{k=1}^{\infty}\frac{k^{n}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BellB(n, 1) = exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..infinity)
BellB[n] == Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expe^{-1}\sum_{k=1}^{\infty}\frac{k^{n}}{k!} = 1+\floor{\expe^{-1}\sum_{k=1}^{2n}\frac{k^{n}}{k!}}}
\expe^{-1}\sum_{k=1}^{\infty}\frac{k^{n}}{k!} = 1+\floor{\expe^{-1}\sum_{k=1}^{2n}\frac{k^{n}}{k!}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..infinity) = 1 + floor(exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..2*n))
Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, Infinity}, GenerateConditions->None] == 1 + Floor[Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, 2*n}, GenerateConditions->None]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\Bellnumber@{n}\frac{x^{n}}{n!} = \exp(\expe^{x}-1)}
\sum_{n=0}^{\infty}\Bellnumber@{n}\frac{x^{n}}{n!} = \exp(\expe^{x}-1)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(BellB(n, 1)*((x)^(n))/(factorial(n)), n = 0..infinity) = exp(exp(x)- 1)
Sum[BellB[n]*Divide[(x)^(n),(n)!], {n, 0, Infinity}, GenerateConditions->None] == Exp[Exp[x]- 1]
Translation Error Translation Error - -
26.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n+1} = \sum_{k=0}^{n}\binom{n}{k}\Bellnumber@{k}}
\Bellnumber@{n+1} = \sum_{k=0}^{n}\binom{n}{k}\Bellnumber@{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BellB(n + 1, 1) = sum(binomial(n,k)*BellB(k, 1), k = 0..n)
BellB[n + 1] == Sum[Binomial[n,k]*BellB[k], {k, 0, n}, GenerateConditions->None]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
26.7#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Bellnumber@{n+1} = \sum_{k=0}^{n}\binom{n}{k}\Bellnumber@{n}}
\Bellnumber@{n+1} = \sum_{k=0}^{n}\binom{n}{k}\Bellnumber@{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BellB(n + 1, 1) = sum(binomial(n,k)*BellB(n, 1), k = 0..n)
BellB[n + 1] == Sum[Binomial[n,k]*BellB[n], {k, 0, n}, GenerateConditions->None]
Failure Failure
Failed [2 / 3]
Result: -3.
Test Values: {n = 2}

Result: -25.
Test Values: {n = 3}

Failed [2 / 3]
Result: -3.0
Test Values: {Rule[n, 2]}

Result: -25.0
Test Values: {Rule[n, 3]}

26.7.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle N\ln@@{N} = n}
N\ln@@{N} = n
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
N*ln(N) = n
N*Log[N] == n
Failure Failure
Failed [30 / 30]
Result: -1.261799388+.4534498412*I
Test Values: {N = 1/2*3^(1/2)+1/2*I, n = 1}

Result: -2.261799388+.4534498412*I
Test Values: {N = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-1.2617993877991494, 0.4534498410585544]
Test Values: {Rule[n, 1], Rule[N, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.261799387799149, 0.4534498410585544]
Test Values: {Rule[n, 2], Rule[N, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data