Heun Functions - 31.10 Integral Equations and Representations

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
31.10.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p(t) = t^{\gamma}(t-1)^{\delta}(t-a)^{\epsilon}}
p(t) = t^{\gamma}(t-1)^{\delta}(t-a)^{\epsilon}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
p(t) = (t)^(gamma)*(t - 1)^(delta)*(t - a)^(epsilon)
p[t] == (t)^\[Gamma]*(t - 1)^\[Delta]*(t - a)^\[Epsilon]
Skipped - no semantic math Skipped - no semantic math - -
31.10.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin^{2}@@{\theta}\left(\pderiv[2]{\mathcal{K}}{\theta}+\left((1-2\gamma)\tan@@{\theta}+2(\delta+\epsilon-\tfrac{1}{2})\cot@@{\theta}\right)\pderiv{\mathcal{K}}{\theta}-4\alpha\beta\mathcal{K}\right)+\pderiv[2]{\mathcal{K}}{\phi}+\left((1-2\delta)\cot@@{\phi}-(1-2\epsilon)\tan@@{\phi}\right)\pderiv{\mathcal{K}}{\phi} = 0}
\sin^{2}@@{\theta}\left(\pderiv[2]{\mathcal{K}}{\theta}+\left((1-2\gamma)\tan@@{\theta}+2(\delta+\epsilon-\tfrac{1}{2})\cot@@{\theta}\right)\pderiv{\mathcal{K}}{\theta}-4\alpha\beta\mathcal{K}\right)+\pderiv[2]{\mathcal{K}}{\phi}+\left((1-2\delta)\cot@@{\phi}-(1-2\epsilon)\tan@@{\phi}\right)\pderiv{\mathcal{K}}{\phi} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(sin(theta))^(2)*(diff(K, [theta$(2)])+((1 - 2*gamma)*tan(theta)+ 2*(delta + epsilon -(1)/(2))*cot(theta))*diff(K, theta)- 4*alpha*beta*K)+ diff(K, [phi$(2)])+((1 - 2*delta)*cot(phi)-(1 - 2*epsilon)*tan(phi))*diff(K, phi) = 0
(Sin[\[Theta]])^(2)*(D[K, {\[Theta], 2}]+((1 - 2*\[Gamma])*Tan[\[Theta]]+ 2*(\[Delta]+ \[Epsilon]-Divide[1,2])*Cot[\[Theta]])*D[K, \[Theta]]- 4*\[Alpha]*\[Beta]*K)+ D[K, {\[Phi], 2}]+((1 - 2*\[Delta])*Cot[\[Phi]]-(1 - 2*\[Epsilon])*Tan[\[Phi]])*D[K, \[Phi]] == 0
Failure Failure
Failed [300 / 300]
Result: -2.252732458-7.327918109*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, alpha = 3/2, beta = 3/2, delta = 1/2*3^(1/2)+1/2*I, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, epsilon = 1}

Result: -2.252732458-7.327918109*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, alpha = 3/2, beta = 3/2, delta = 1/2*3^(1/2)+1/2*I, gamma = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, epsilon = 2}

... skip entries to safe data
Skipped - Because timed out
31.10.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathcal{K}(z,t) = (zt-a)^{\frac{1}{2}-\delta-\sigma}\*\genhyperF{2}{1}@@{\frac{1}{2}-\delta-\sigma+\alpha,\frac{1}{2}-\delta-\sigma+\beta}{\gamma}{\frac{zt}{a}}\*\genhyperF{2}{1}@@{-\frac{1}{2}+\delta+\sigma,-\frac{1}{2}+\epsilon-\sigma}{\delta}{\frac{a(z-1)(t-1)}{(a-1)(zt-a)}}}
\mathcal{K}(z,t) = (zt-a)^{\frac{1}{2}-\delta-\sigma}\*\genhyperF{2}{1}@@{\frac{1}{2}-\delta-\sigma+\alpha,\frac{1}{2}-\delta-\sigma+\beta}{\gamma}{\frac{zt}{a}}\*\genhyperF{2}{1}@@{-\frac{1}{2}+\delta+\sigma,-\frac{1}{2}+\epsilon-\sigma}{\delta}{\frac{a(z-1)(t-1)}{(a-1)(zt-a)}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
K(z , t) = (z*t - a)^((1)/(2)- delta - sigma)* hypergeom([(1)/(2)- delta - sigma + alpha ,(1)/(2)- delta - sigma + beta], [gamma], (z*t)/(a))* hypergeom([-(1)/(2)+ delta + sigma , -(1)/(2)+ epsilon - sigma], [delta], (a*(z - 1)*(t - 1))/((a - 1)*(z*t - a)))
K[z , t] == (z*t - a)^(Divide[1,2]- \[Delta]- \[Sigma])* HypergeometricPFQ[{Divide[1,2]- \[Delta]- \[Sigma]+ \[Alpha],Divide[1,2]- \[Delta]- \[Sigma]+ \[Beta]}, {\[Gamma]}, Divide[z*t,a]]* HypergeometricPFQ[{-Divide[1,2]+ \[Delta]+ \[Sigma], -Divide[1,2]+ \[Epsilon]- \[Sigma]}, {\[Delta]}, Divide[a*(z - 1)*(t - 1),(a - 1)*(z*t - a)]]
Failure Failure Error Skipped - Because timed out
31.10.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv[2]{\mathcal{K}}{u}+\pderiv[2]{\mathcal{K}}{v}+\pderiv[2]{\mathcal{K}}{w}+\frac{2\gamma-1}{u}\pderiv{\mathcal{K}}{u}+\frac{2\delta-1}{v}\pderiv{\mathcal{K}}{v}+\frac{2\epsilon-1}{w}\pderiv{\mathcal{K}}{w} = 0}
\pderiv[2]{\mathcal{K}}{u}+\pderiv[2]{\mathcal{K}}{v}+\pderiv[2]{\mathcal{K}}{w}+\frac{2\gamma-1}{u}\pderiv{\mathcal{K}}{u}+\frac{2\delta-1}{v}\pderiv{\mathcal{K}}{v}+\frac{2\epsilon-1}{w}\pderiv{\mathcal{K}}{w} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff(K, [u$(2)])+ diff(K, [v$(2)])+ subs( temp=(I*(((s - a)*(t - a)*(z - a))/(a*(1 - a)))^(1/2)), diff( K, temp$(2) ) )+(2*gamma - 1)/(u)*diff(K, u)+(2*delta - 1)/(v)*diff(K, v)+(2*epsilon - 1)/(I*(((s - a)*(t - a)*(z - a))/(a*(1 - a)))^(1/2))*subs( temp=(I*(((s - a)*(t - a)*(z - a))/(a*(1 - a)))^(1/2)), diff( K, temp$(1) ) ) = 0
D[K, {u, 2}]+ D[K, {v, 2}]+ (D[K, {temp, 2}]/.temp-> (I*(Divide[(s - a)*(t - a)*(z - a),a*(1 - a)])^(1/2)))+Divide[2*\[Gamma]- 1,u]*D[K, u]+Divide[2*\[Delta]- 1,v]*D[K, v]+Divide[2*\[Epsilon]- 1,I*(Divide[(s - a)*(t - a)*(z - a),a*(1 - a)])^(1/2)]*(D[K, {temp, 1}]/.temp-> (I*(Divide[(s - a)*(t - a)*(z - a),a*(1 - a)])^(1/2))) == 0
Successful Successful - -
31.10#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle u = r\cos@@{\theta}}
u = r\cos@@{\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
u = r*cos(theta)
u == r*Cos[\[Theta]]
Failure Failure
Failed [300 / 300]
Result: 1.961839932-.954243254e-1*I
Test Values: {r = -3/2, theta = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I}

Result: .5958145280+.2706010786*I
Test Values: {r = -3/2, theta = 1/2*3^(1/2)+1/2*I, u = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.9618399323702764, -0.09542432534354878]
Test Values: {Rule[r, -1.5], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.7076736790806044, 1.2036130644027554]
Test Values: {Rule[r, -1.5], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
31.10#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle v = r\sin@@{\theta}\sin@@{\phi}}
v = r\sin@@{\theta}\sin@@{\phi}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
v = r*sin(theta)*sin(phi)
v == r*Sin[\[Theta]]*Sin[\[Phi]]
Failure Failure
Failed [300 / 300]
Result: 1.801839169+1.369966168*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, r = -3/2, theta = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I}

Result: .4358137648+1.735991572*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, r = -3/2, theta = 1/2*3^(1/2)+1/2*I, v = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.801839167885118, 1.3699661685131752]
Test Values: {Rule[r, -1.5], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.4330012446224153, 1.2666732793219693]
Test Values: {Rule[r, -1.5], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
31.10#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w = r\sin@@{\theta}\cos@@{\phi}}
w = r\sin@@{\theta}\cos@@{\phi}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(I*(((s - a)*(t - a)*(z - a))/(a*(1 - a)))^(1/2)) = r*sin(theta)*cos(phi)
(I*(Divide[(s - a)*(t - a)*(z - a),a*(1 - a)])^(1/2)) == r*Sin[\[Theta]]*Cos[\[Phi]]
Failure Failure Manual Skip! Skipped - Because timed out
31.10.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv[2]{\mathcal{K}}{r}+\frac{2(\gamma+\delta+\epsilon)-1}{r}\pderiv{\mathcal{K}}{r}+\frac{1}{r^{2}}\pderiv[2]{\mathcal{K}}{\theta}+\frac{(2(\delta+\epsilon)-1)\cot@@{\theta}-(2\gamma-1)\tan@@{\theta}}{r^{2}}\pderiv{\mathcal{K}}{\theta}+\frac{1}{r^{2}\sin^{2}@@{\theta}}\pderiv[2]{\mathcal{K}}{\phi}+\frac{(2\delta-1)\cot@@{\phi}-(2\epsilon-1)\tan@@{\phi}}{r^{2}\sin^{2}@@{\theta}}\pderiv{\mathcal{K}}{\phi} = 0}
\pderiv[2]{\mathcal{K}}{r}+\frac{2(\gamma+\delta+\epsilon)-1}{r}\pderiv{\mathcal{K}}{r}+\frac{1}{r^{2}}\pderiv[2]{\mathcal{K}}{\theta}+\frac{(2(\delta+\epsilon)-1)\cot@@{\theta}-(2\gamma-1)\tan@@{\theta}}{r^{2}}\pderiv{\mathcal{K}}{\theta}+\frac{1}{r^{2}\sin^{2}@@{\theta}}\pderiv[2]{\mathcal{K}}{\phi}+\frac{(2\delta-1)\cot@@{\phi}-(2\epsilon-1)\tan@@{\phi}}{r^{2}\sin^{2}@@{\theta}}\pderiv{\mathcal{K}}{\phi} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff(K, [r$(2)])+(2*(gamma + delta + epsilon)- 1)/(r)*diff(K, r)+(1)/((r)^(2))*diff(K, [theta$(2)])+((2*(delta + epsilon)- 1)*cot(theta)-(2*gamma - 1)*tan(theta))/((r)^(2))*diff(K, theta)+(1)/((r)^(2)* (sin(theta))^(2))*diff(K, [phi$(2)])+((2*delta - 1)*cot(phi)-(2*epsilon - 1)*tan(phi))/((r)^(2)* (sin(theta))^(2))*diff(K, phi) = 0
D[K, {r, 2}]+Divide[2*(\[Gamma]+ \[Delta]+ \[Epsilon])- 1,r]*D[K, r]+Divide[1,(r)^(2)]*D[K, {\[Theta], 2}]+Divide[(2*(\[Delta]+ \[Epsilon])- 1)*Cot[\[Theta]]-(2*\[Gamma]- 1)*Tan[\[Theta]],(r)^(2)]*D[K, \[Theta]]+Divide[1,(r)^(2)* (Sin[\[Theta]])^(2)]*D[K, {\[Phi], 2}]+Divide[(2*\[Delta]- 1)*Cot[\[Phi]]-(2*\[Epsilon]- 1)*Tan[\[Phi]],(r)^(2)* (Sin[\[Theta]])^(2)]*D[K, \[Phi]] == 0
Successful Successful - Successful [Tested: 300]