Painlevé Transcendents - 32.3 Graphics
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
32.3.E2 | \deriv[2]{u}{x} = 3u^{5}+2xu^{3}+\left(\tfrac{1}{4}x^{2}-\nu-\tfrac{1}{2}\right)u |
|
diff(u, [x$(2)]) = 3*(u)^(5)+ 2*x*(u)^(3)+((1)/(4)*(x)^(2)- nu -(1)/(2))*u
|
D[u, {x, 2}] == 3*(u)^(5)+ 2*x*(u)^(3)+(Divide[1,4]*(x)^(2)- \[Nu]-Divide[1,2])*u
|
Failure | Failure | Failed [300 / 300] |
Failed [300 / 300]
|
32.3.E4 | w(x) = 2\sqrt{2}u_{k}^{2}(\sqrt{2}x,\nu) |
|
w(x) = 2*sqrt(2)*(u[k])^(2)(sqrt(2)*x , nu) |
w[x] == 2*Sqrt[2]*(Subscript[u, k])^(2)[Sqrt[2]*x , \[Nu]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.3.E6 | u^{2} = -\tfrac{1}{3}x+\tfrac{1}{6}\sqrt{x^{2}+12\nu+6} |
|
(u)^(2) = -(1)/(3)*x +(1)/(6)*sqrt((x)^(2)+ 12*nu + 6) |
(u)^(2) == -Divide[1,3]*x +Divide[1,6]*Sqrt[(x)^(2)+ 12*\[Nu]+ 6] |
Skipped - no semantic math | Skipped - no semantic math | - | - |