Integrals with Coalescing Saddles - 36.12 Uniform Approximation of Integrals
		
		
		
		Jump to navigation
		Jump to search
		
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple | Symbolic Mathematica | Numeric Maple | Numeric Mathematica | 
|---|---|---|---|---|---|---|---|---|
| 36.12.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle P_{mn}(\mathbf{y}) = (t_{n}(\mathbf{x}(\mathbf{y})))^{K+1}+\sum_{l=m+2}^{K}\frac{l}{K+2}x_{l}(\mathbf{y})(t_{n}(\mathbf{x}(\mathbf{y})))^{l-1}} P_{mn}(\mathbf{y}) = (t_{n}(\mathbf{x}(\mathbf{y})))^{K+1}+\sum_{l=m+2}^{K}\frac{l}{K+2}x_{l}(\mathbf{y})(t_{n}(\mathbf{x}(\mathbf{y})))^{l-1} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | P[m, n](y) = (t[n](x(y)))^(K + 1)+ sum((l)/(K + 2)*x[l](y)*(t[n](x(y)))^(l - 1), l = m + 2..K)
 | Subscript[P, m, n][y] == (Subscript[t, n][x[y]])^(K + 1)+ Sum[Divide[l,K + 2]*Subscript[x, l][y]*(Subscript[t, n][x[y]])^(l - 1), {l, m + 2, K}, GenerateConditions->None]
 | Failure | Failure | Skipped - Because timed out | Skipped - Because timed out |