Elementary Functions - 4.28 Definitions and Periodicity

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.28.E1 sinh ⁑ z = e z - e - z 2 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 2 {\displaystyle{\displaystyle\sinh z=\frac{e^{z}-e^{-z}}{2}}}
\sinh@@{z} = \frac{e^{z}-e^{-z}}{2}

sinh(z) = (exp(z)- exp(- z))/(2)
Sinh[z] == Divide[Exp[z]- Exp[- z],2]
Successful Successful - Successful [Tested: 7]
4.28.E2 cosh ⁑ z = e z + e - z 2 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 2 {\displaystyle{\displaystyle\cosh z=\frac{e^{z}+e^{-z}}{2}}}
\cosh@@{z} = \frac{e^{z}+e^{-z}}{2}

cosh(z) = (exp(z)+ exp(- z))/(2)
Cosh[z] == Divide[Exp[z]+ Exp[- z],2]
Successful Successful - Successful [Tested: 7]
4.28.E3 cosh ⁑ z + sinh ⁑ z = e + z 𝑧 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\cosh z+\sinh z=e^{+z}}}
\cosh@@{z}+\sinh@@{z} = e^{+ z}

cosh(z)+ sinh(z) = exp(+ z)
Cosh[z]+ Sinh[z] == Exp[+ z]
Successful Successful - Successful [Tested: 7]
4.28.E3 cosh ⁑ z - sinh ⁑ z = e - z 𝑧 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\cosh z-\sinh z=e^{-z}}}
\cosh@@{z}-\sinh@@{z} = e^{- z}

cosh(z)- sinh(z) = exp(- z)
Cosh[z]- Sinh[z] == Exp[- z]
Successful Successful - Successful [Tested: 7]
4.28.E4 tanh ⁑ z = sinh ⁑ z cosh ⁑ z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\tanh z=\frac{\sinh z}{\cosh z}}}
\tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}}

tanh(z) = (sinh(z))/(cosh(z))
Tanh[z] == Divide[Sinh[z],Cosh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E5 csch ⁑ z = 1 sinh ⁑ z 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{csch}z=\frac{1}{\sinh z}}}
\csch@@{z} = \frac{1}{\sinh@@{z}}

csch(z) = (1)/(sinh(z))
Csch[z] == Divide[1,Sinh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E6 sech ⁑ z = 1 cosh ⁑ z 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{sech}z=\frac{1}{\cosh z}}}
\sech@@{z} = \frac{1}{\cosh@@{z}}

sech(z) = (1)/(cosh(z))
Sech[z] == Divide[1,Cosh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E7 coth ⁑ z = 1 tanh ⁑ z hyperbolic-cotangent 𝑧 1 𝑧 {\displaystyle{\displaystyle\coth z=\frac{1}{\tanh z}}}
\coth@@{z} = \frac{1}{\tanh@@{z}}

coth(z) = (1)/(tanh(z))
Coth[z] == Divide[1,Tanh[z]]
Successful Successful - Successful [Tested: 7]
4.28.E8 sin ⁑ ( i ⁒ z ) = i ⁒ sinh ⁑ z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\sin\left(iz\right)=i\sinh z}}
\sin@{iz} = i\sinh@@{z}

sin(I*z) = I*sinh(z)
Sin[I*z] == I*Sinh[z]
Successful Successful - Successful [Tested: 7]
4.28.E9 cos ⁑ ( i ⁒ z ) = cosh ⁑ z 𝑖 𝑧 𝑧 {\displaystyle{\displaystyle\cos\left(iz\right)=\cosh z}}
\cos@{iz} = \cosh@@{z}

cos(I*z) = cosh(z)
Cos[I*z] == Cosh[z]
Successful Successful - Successful [Tested: 7]
4.28.E10 tan ⁑ ( i ⁒ z ) = i ⁒ tanh ⁑ z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\tan\left(iz\right)=i\tanh z}}
\tan@{iz} = i\tanh@@{z}

tan(I*z) = I*tanh(z)
Tan[I*z] == I*Tanh[z]
Successful Successful - Successful [Tested: 7]
4.28.E11 csc ⁑ ( i ⁒ z ) = - i ⁒ csch ⁑ z 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\csc\left(iz\right)=-i\operatorname{csch}z}}
\csc@{iz} = -i\csch@@{z}

csc(I*z) = - I*csch(z)
Csc[I*z] == - I*Csch[z]
Successful Successful - Successful [Tested: 7]
4.28.E12 sec ⁑ ( i ⁒ z ) = sech ⁑ z 𝑖 𝑧 𝑧 {\displaystyle{\displaystyle\sec\left(iz\right)=\operatorname{sech}z}}
\sec@{iz} = \sech@@{z}

sec(I*z) = sech(z)
Sec[I*z] == Sech[z]
Successful Successful - Successful [Tested: 7]
4.28.E13 cot ⁑ ( i ⁒ z ) = - i ⁒ coth ⁑ z 𝑖 𝑧 𝑖 hyperbolic-cotangent 𝑧 {\displaystyle{\displaystyle\cot\left(iz\right)=-i\coth z}}
\cot@{iz} = -i\coth@@{z}

cot(I*z) = - I*coth(z)
Cot[I*z] == - I*Coth[z]
Successful Successful - Successful [Tested: 7]