Elementary Functions - 4.28 Definitions and Periodicity
Jump to navigation
Jump to search
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.28.E1 | \sinh@@{z} = \frac{e^{z}-e^{-z}}{2} |
|
sinh(z) = (exp(z)- exp(- z))/(2)
|
Sinh[z] == Divide[Exp[z]- Exp[- z],2]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E2 | \cosh@@{z} = \frac{e^{z}+e^{-z}}{2} |
|
cosh(z) = (exp(z)+ exp(- z))/(2)
|
Cosh[z] == Divide[Exp[z]+ Exp[- z],2]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E3 | \cosh@@{z}+\sinh@@{z} = e^{+ z} |
|
cosh(z)+ sinh(z) = exp(+ z)
|
Cosh[z]+ Sinh[z] == Exp[+ z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E3 | \cosh@@{z}-\sinh@@{z} = e^{- z} |
|
cosh(z)- sinh(z) = exp(- z)
|
Cosh[z]- Sinh[z] == Exp[- z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E4 | \tanh@@{z} = \frac{\sinh@@{z}}{\cosh@@{z}} |
|
tanh(z) = (sinh(z))/(cosh(z))
|
Tanh[z] == Divide[Sinh[z],Cosh[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E5 | \csch@@{z} = \frac{1}{\sinh@@{z}} |
|
csch(z) = (1)/(sinh(z))
|
Csch[z] == Divide[1,Sinh[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E6 | \sech@@{z} = \frac{1}{\cosh@@{z}} |
|
sech(z) = (1)/(cosh(z))
|
Sech[z] == Divide[1,Cosh[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E7 | \coth@@{z} = \frac{1}{\tanh@@{z}} |
|
coth(z) = (1)/(tanh(z))
|
Coth[z] == Divide[1,Tanh[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E8 | \sin@{iz} = i\sinh@@{z} |
|
sin(I*z) = I*sinh(z)
|
Sin[I*z] == I*Sinh[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E9 | \cos@{iz} = \cosh@@{z} |
|
cos(I*z) = cosh(z)
|
Cos[I*z] == Cosh[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E10 | \tan@{iz} = i\tanh@@{z} |
|
tan(I*z) = I*tanh(z)
|
Tan[I*z] == I*Tanh[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E11 | \csc@{iz} = -i\csch@@{z} |
|
csc(I*z) = - I*csch(z)
|
Csc[I*z] == - I*Csch[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E12 | \sec@{iz} = \sech@@{z} |
|
sec(I*z) = sech(z)
|
Sec[I*z] == Sech[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.28.E13 | \cot@{iz} = -i\coth@@{z} |
|
cot(I*z) = - I*coth(z)
|
Cot[I*z] == - I*Coth[z]
|
Successful | Successful | - | Successful [Tested: 7] |