Gamma Function - 5.19 Mathematical Applications

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
5.19#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S = \sum_{k=0}^{\infty}a_{k}}
S = \sum_{k=0}^{\infty}a_{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
S = sum(a[k], k = 0..infinity)
S == Sum[Subscript[a, k], {k, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
5.19#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{k} = \frac{k}{(3k+2)(2k+1)(k+1)}}
a_{k} = \frac{k}{(3k+2)(2k+1)(k+1)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
a[k] = (k)/((3*k + 2)*(2*k + 1)*(k + 1))
Subscript[a, k] == Divide[k,(3*k + 2)*(2*k + 1)*(k + 1)]
Skipped - no semantic math Skipped - no semantic math - -
5.19.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{k} = \frac{2}{k+\frac{2}{3}}-\frac{1}{k+\frac{1}{2}}-\frac{1}{k+1}}
a_{k} = \frac{2}{k+\frac{2}{3}}-\frac{1}{k+\frac{1}{2}}-\frac{1}{k+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
a[k] = (2)/(k +(2)/(3))-(1)/(k +(1)/(2))-(1)/(k + 1)
Subscript[a, k] == Divide[2,k +Divide[2,3]]-Divide[1,k +Divide[1,2]]-Divide[1,k + 1]
Skipped - no semantic math Skipped - no semantic math - -
5.19.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S = \digamma@{\tfrac{1}{2}}-2\digamma@{\tfrac{2}{3}}-\EulerConstant}
S = \digamma@{\tfrac{1}{2}}-2\digamma@{\tfrac{2}{3}}-\EulerConstant
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
S = Psi((1)/(2))- 2*Psi((2)/(3))- gamma
S == PolyGamma[Divide[1,2]]- 2*PolyGamma[Divide[2,3]]- EulerGamma
Failure Failure
Failed [10 / 10]
Result: .7702822630+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I}

Result: -.5957431410+.8660254040*I
Test Values: {S = -1/2+1/2*I*3^(1/2)}

Result: .4042568590-.8660254040*I
Test Values: {S = 1/2-1/2*I*3^(1/2)}

Result: -.9617685450-.5000000000*I
Test Values: {S = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [10 / 10]
Result: Complex[0.7702822631342183, 0.49999999999999994]
Test Values: {Rule[S, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.5957431406502202, 0.8660254037844387]
Test Values: {Rule[S, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
5.19.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \digamma@{\tfrac{1}{2}}-2\digamma@{\tfrac{2}{3}}-\EulerConstant = 3\ln@@{3}-2\ln@@{2}-\tfrac{1}{3}\pi\sqrt{3}}
\digamma@{\tfrac{1}{2}}-2\digamma@{\tfrac{2}{3}}-\EulerConstant = 3\ln@@{3}-2\ln@@{2}-\tfrac{1}{3}\pi\sqrt{3}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Psi((1)/(2))- 2*Psi((2)/(3))- gamma = 3*ln(3)- 2*ln(2)-(1)/(3)*Pi*sqrt(3)
PolyGamma[Divide[1,2]]- 2*PolyGamma[Divide[2,3]]- EulerGamma == 3*Log[3]- 2*Log[2]-Divide[1,3]*Pi*Sqrt[3]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 1]
5.19#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle V = \frac{\pi^{\frac{1}{2}n}r^{n}}{\EulerGamma@{\frac{1}{2}n+1}}}
V = \frac{\pi^{\frac{1}{2}n}r^{n}}{\EulerGamma@{\frac{1}{2}n+1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\frac{1}{2}n+1)} > 0}
V = ((Pi)^((1)/(2)*n)* (r)^(n))/(GAMMA((1)/(2)*n + 1))
V == Divide[(Pi)^(Divide[1,2]*n)* (r)^(n),Gamma[Divide[1,2]*n + 1]]
Failure Failure
Failed [180 / 180]
Result: 3.866025403+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 1}

Result: -6.202558068+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 2}

Result: 15.00319234+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 3}

Result: -2.133974595+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = 1.5, n = 1}

... skip entries to safe data
Failed [180 / 180]
Result: Complex[3.866025403784439, 0.49999999999999994]
Test Values: {Rule[n, 1], Rule[r, -1.5], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-6.202558066792596, 0.49999999999999994]
Test Values: {Rule[n, 2], Rule[r, -1.5], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
5.19#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S = \frac{2\pi^{\frac{1}{2}n}r^{n-1}}{\EulerGamma@{\frac{1}{2}n}}}
S = \frac{2\pi^{\frac{1}{2}n}r^{n-1}}{\EulerGamma@{\frac{1}{2}n}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\frac{1}{2}n)} > 0}
S = (2*(Pi)^((1)/(2)*n)* (r)^(n - 1))/(GAMMA((1)/(2)*n))
S == Divide[2*(Pi)^(Divide[1,2]*n)* (r)^(n - 1),Gamma[Divide[1,2]*n]]
Failure Failure
Failed [174 / 180]
Result: -1.133974596+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 1}

Result: 10.29080337+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 2}

Result: -27.40830850+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 3}

Result: -1.133974596+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, r = 1.5, n = 1}

... skip entries to safe data
Failed [174 / 180]
Result: Complex[-1.1339745962155612, 0.49999999999999994]
Test Values: {Rule[n, 1], Rule[r, -1.5], Rule[S, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[10.290803364553819, 0.49999999999999994]
Test Values: {Rule[n, 2], Rule[r, -1.5], Rule[S, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
5.19#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2\pi^{\frac{1}{2}n}r^{n-1}}{\EulerGamma@{\frac{1}{2}n}} = \frac{n}{r}V}
\frac{2\pi^{\frac{1}{2}n}r^{n-1}}{\EulerGamma@{\frac{1}{2}n}} = \frac{n}{r}V
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\frac{1}{2}n)} > 0}
(2*(Pi)^((1)/(2)*n)* (r)^(n - 1))/(GAMMA((1)/(2)*n)) = (n)/(r)*V
Divide[2*(Pi)^(Divide[1,2]*n)* (r)^(n - 1),Gamma[Divide[1,2]*n]] == Divide[n,r]*V
Failure Failure
Failed [180 / 180]
Result: 2.577350269+.3333333334*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 1}

Result: -8.270077424+.6666666665*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 2}

Result: 30.00638471+1.000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 3}

Result: 1.422649731-.3333333334*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = 1.5, n = 1}

... skip entries to safe data
Failed [180 / 180]
Result: Complex[2.5773502691896253, 0.33333333333333326]
Test Values: {Rule[n, 1], Rule[r, -1.5], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-8.270077422390127, 0.6666666666666665]
Test Values: {Rule[n, 2], Rule[r, -1.5], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data