Elementary Functions - 5.2 Definitions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
5.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerGamma@{z} = \int_{0}^{\infty}e^{-t}t^{z-1}\diff{t}}
\EulerGamma@{z} = \int_{0}^{\infty}e^{-t}t^{z-1}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z} > 0}
GAMMA(z) = int(exp(- t)*(t)^(z - 1), t = 0..infinity)
Gamma[z] == Integrate[Exp[- t]*(t)^(z - 1), {t, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 5]
5.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \digamma@{z} = \EulerGamma'@{z}/\EulerGamma@{z}}
\digamma@{z} = \EulerGamma'@{z}/\EulerGamma@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z} > 0}
Psi(z) = diff( GAMMA(z), z$(1) )/GAMMA(z)
PolyGamma[z] == D[Gamma[z], {z, 1}]/Gamma[z]
Successful Successful - Successful [Tested: 1]
5.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Pochhammersym{a}{0} = 1}
\Pochhammersym{a}{0} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
pochhammer(a, 0) = 1
Pochhammer[a, 0] == 1
Successful Successful - Successful [Tested: 6]
5.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Pochhammersym{a}{n} = \EulerGamma@{a+n}/\EulerGamma@{a}}
\Pochhammersym{a}{n} = \EulerGamma@{a+n}/\EulerGamma@{a}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(a+n)} > 0, \realpart@@{a} > 0}
pochhammer(a, n) = GAMMA(a + n)/GAMMA(a)
Pochhammer[a, n] == Gamma[a + n]/Gamma[a]
Successful Successful - Successful [Tested: 3]
5.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Pochhammersym{-a}{n} = (-1)^{n}\Pochhammersym{a-n+1}{n}}
\Pochhammersym{-a}{n} = (-1)^{n}\Pochhammersym{a-n+1}{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
pochhammer(- a, n) = (- 1)^(n)* pochhammer(a - n + 1, n)
Pochhammer[- a, n] == (- 1)^(n)* Pochhammer[a - n + 1, n]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
5.2#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Pochhammersym{a}{2n} = 2^{2n}\Pochhammersym{\frac{a}{2}}{n}\Pochhammersym{\frac{a+1}{2}}{n}}
\Pochhammersym{a}{2n} = 2^{2n}\Pochhammersym{\frac{a}{2}}{n}\Pochhammersym{\frac{a+1}{2}}{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
pochhammer(a, 2*n) = (2)^(2*n)* pochhammer((a)/(2), n)*pochhammer((a + 1)/(2), n)
Pochhammer[a, 2*n] == (2)^(2*n)* Pochhammer[Divide[a,2], n]*Pochhammer[Divide[a + 1,2], n]
Successful Successful - Successful [Tested: 18]
5.2#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Pochhammersym{a}{2n+1} = 2^{2n+1}\Pochhammersym{\frac{a}{2}}{n+1}\Pochhammersym{\frac{a+1}{2}}{n}}
\Pochhammersym{a}{2n+1} = 2^{2n+1}\Pochhammersym{\frac{a}{2}}{n+1}\Pochhammersym{\frac{a+1}{2}}{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
pochhammer(a, 2*n + 1) = (2)^(2*n + 1)* pochhammer((a)/(2), n + 1)*pochhammer((a + 1)/(2), n)
Pochhammer[a, 2*n + 1] == (2)^(2*n + 1)* Pochhammer[Divide[a,2], n + 1]*Pochhammer[Divide[a + 1,2], n]
Successful Successful - Successful [Tested: 18]