Gamma Function - 5.8 Infinite Products

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
5.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{z}} = ze^{\EulerConstant z}\prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)e^{-z/k}}
\frac{1}{\EulerGamma@{z}} = ze^{\EulerConstant z}\prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)e^{-z/k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z} > 0}
(1)/(GAMMA(z)) = z*exp(gamma*z)*product((1 +(z)/(k))*exp(- z/k), k = 1..infinity)
Divide[1,Gamma[z]] == z*Exp[EulerGamma*z]*Product[(1 +Divide[z,k])*Exp[- z/k], {k, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 5]
5.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left|\frac{\EulerGamma@{x}}{\EulerGamma@{x+\iunit y}}\right|^{2} = \prod_{k=0}^{\infty}\left(1+\frac{y^{2}}{(x+k)^{2}}\right)}
\left|\frac{\EulerGamma@{x}}{\EulerGamma@{x+\iunit y}}\right|^{2} = \prod_{k=0}^{\infty}\left(1+\frac{y^{2}}{(x+k)^{2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{x} > 0, \realpart@@{(x+\iunit y)} > 0}
(abs((GAMMA(x))/(GAMMA(x + I*y))))^(2) = product(1 +((y)^(2))/((x + k)^(2)), k = 0..infinity)
(Abs[Divide[Gamma[x],Gamma[x + I*y]]])^(2) == Product[1 +Divide[(y)^(2),(x + k)^(2)], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [18 / 18]
Result: -6.243891895+0.*I
Test Values: {x = 1.5, y = -1.5, x = 1}

Result: -6.243891895+0.*I
Test Values: {x = 1.5, y = 1.5, x = 1}

Result: -.210463144+0.*I
Test Values: {x = 1.5, y = -.5, x = 1}

Result: -.210463144+0.*I
Test Values: {x = 1.5, y = .5, x = 1}

... skip entries to safe data
Successful [Tested: 18]