Airy and Related Functions - 9.6 Relations to Other Functions

From testwiki
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
9.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi@{z} = \pi^{-1}\sqrt{z/3}\modBesselK{+ 1/3}@{\zeta}}
\AiryAi@{z} = \pi^{-1}\sqrt{z/3}\modBesselK{+ 1/3}@{\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryAi(z) = (Pi)^(- 1)*sqrt(z/3)*BesselK(+ 1/3, (2)/(3)*(z)^((3)/(2)))
AiryAi[z] == (Pi)^(- 1)*Sqrt[z/3]*BesselK[+ 1/3, Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [1 / 7]
Result: 1.028202947+.1796919596*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[1.0282029471418963, 0.1796919597060948]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi@{z} = \pi^{-1}\sqrt{z/3}\modBesselK{- 1/3}@{\zeta}}
\AiryAi@{z} = \pi^{-1}\sqrt{z/3}\modBesselK{- 1/3}@{\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryAi(z) = (Pi)^(- 1)*sqrt(z/3)*BesselK(- 1/3, (2)/(3)*(z)^((3)/(2)))
AiryAi[z] == (Pi)^(- 1)*Sqrt[z/3]*BesselK[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [1 / 7]
Result: 1.028202947+.1796919596*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[1.0282029471418963, 0.1796919597060948]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pi^{-1}\sqrt{z/3}\modBesselK{+ 1/3}@{\zeta} = \tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right)}
\pi^{-1}\sqrt{z/3}\modBesselK{+ 1/3}@{\zeta} = \tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(Pi)^(- 1)*sqrt(z/3)*BesselK(+ 1/3, (2)/(3)*(z)^((3)/(2))) = (1)/(3)*sqrt(z)*(BesselI(- 1/3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/3, (2)/(3)*(z)^((3)/(2))))
(Pi)^(- 1)*Sqrt[z/3]*BesselK[+ 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,3]*Sqrt[z]*(BesselI[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pi^{-1}\sqrt{z/3}\modBesselK{- 1/3}@{\zeta} = \tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right)}
\pi^{-1}\sqrt{z/3}\modBesselK{- 1/3}@{\zeta} = \tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(Pi)^(- 1)*sqrt(z/3)*BesselK(- 1/3, (2)/(3)*(z)^((3)/(2))) = (1)/(3)*sqrt(z)*(BesselI(- 1/3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/3, (2)/(3)*(z)^((3)/(2))))
(Pi)^(- 1)*Sqrt[z/3]*BesselK[- 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,3]*Sqrt[z]*(BesselI[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta e^{\pi i/2}}}
\tfrac{1}{3}\sqrt{z}\left(\modBesselI{-1/3}@{\zeta}-\modBesselI{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta e^{\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(3)*sqrt(z)*(BesselI(- 1/3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*sqrt(z/3)*exp(2*Pi*I/3)*HankelH1(1/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2))
Divide[1,3]*Sqrt[z]*(BesselI[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*Sqrt[z/3]*Exp[2*Pi*I/3]*HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]]
Failure Failure
Failed [2 / 7]
Result: 1.045659506-.6037117977*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -1.028202948-.1796919595*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[1.045659506357919, -0.6037117974764359]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-1.0282029471418963, -0.1796919597060947]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta e^{\pi i/2}}}
\tfrac{1}{2}\sqrt{z/3}e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta e^{\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*sqrt(z/3)*exp(2*Pi*I/3)*HankelH1(1/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2)) = (1)/(2)*sqrt(z/3)*exp(Pi*I/3)*HankelH1(- 1/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2))
Divide[1,2]*Sqrt[z/3]*Exp[2*Pi*I/3]*HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]] == Divide[1,2]*Sqrt[z/3]*Exp[Pi*I/3]*HankelH1[- 1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta e^{-\pi i/2}}}
\tfrac{1}{2}\sqrt{z/3}e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta e^{-\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*sqrt(z/3)*exp(Pi*I/3)*HankelH1(- 1/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2)) = (1)/(2)*sqrt(z/3)*exp(- 2*Pi*I/3)*HankelH2(1/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))
Divide[1,2]*Sqrt[z/3]*Exp[Pi*I/3]*HankelH1[- 1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]] == Divide[1,2]*Sqrt[z/3]*Exp[- 2*Pi*I/3]*HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]
Failure Failure
Failed [3 / 7]
Result: -1.045659507+.6037117981*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: .4467028535+.6697146486*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

... skip entries to safe data
Failed [3 / 7]
Result: Complex[-1.0456595063579188, 0.6037117974764359]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.4467028530850735, 0.6697146479323786]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
9.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta e^{-\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{-\pi i/3}\HankelH{2}{-1/3}@{\zeta e^{-\pi i/2}}}
\tfrac{1}{2}\sqrt{z/3}e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta e^{-\pi i/2}} = \tfrac{1}{2}\sqrt{z/3}e^{-\pi i/3}\HankelH{2}{-1/3}@{\zeta e^{-\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*sqrt(z/3)*exp(- 2*Pi*I/3)*HankelH2(1/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2)) = (1)/(2)*sqrt(z/3)*exp(- Pi*I/3)*HankelH2(- 1/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))
Divide[1,2]*Sqrt[z/3]*Exp[- 2*Pi*I/3]*HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]] == Divide[1,2]*Sqrt[z/3]*Exp[- Pi*I/3]*HankelH2[- 1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi'@{z} = -\pi^{-1}(z/\sqrt{3})\modBesselK{+ 2/3}@{\zeta}}
\AiryAi'@{z} = -\pi^{-1}(z/\sqrt{3})\modBesselK{+ 2/3}@{\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff( AiryAi(z), z$(1) ) = - (Pi)^(- 1)*(z/(sqrt(3)))*BesselK(+ 2/3, (2)/(3)*(z)^((3)/(2)))
D[AiryAi[z], {z, 1}] == - (Pi)^(- 1)*(z/(Sqrt[3]))*BesselK[+ 2/3, Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [1 / 7]
Result: -.2876791930+.6573919010*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.2876791932746734, 0.657391901009072]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi'@{z} = -\pi^{-1}(z/\sqrt{3})\modBesselK{- 2/3}@{\zeta}}
\AiryAi'@{z} = -\pi^{-1}(z/\sqrt{3})\modBesselK{- 2/3}@{\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff( AiryAi(z), z$(1) ) = - (Pi)^(- 1)*(z/(sqrt(3)))*BesselK(- 2/3, (2)/(3)*(z)^((3)/(2)))
D[AiryAi[z], {z, 1}] == - (Pi)^(- 1)*(z/(Sqrt[3]))*BesselK[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [1 / 7]
Result: -.2876791930+.6573919010*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.2876791932746734, 0.657391901009072]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi^{-1}(z/\sqrt{3})\modBesselK{+ 2/3}@{\zeta} = (z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right)}
-\pi^{-1}(z/\sqrt{3})\modBesselK{+ 2/3}@{\zeta} = (z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
- (Pi)^(- 1)*(z/(sqrt(3)))*BesselK(+ 2/3, (2)/(3)*(z)^((3)/(2))) = (z/3)*(BesselI(2/3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/3, (2)/(3)*(z)^((3)/(2))))
- (Pi)^(- 1)*(z/(Sqrt[3]))*BesselK[+ 2/3, Divide[2,3]*(z)^(Divide[3,2])] == (z/3)*(BesselI[2/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi^{-1}(z/\sqrt{3})\modBesselK{- 2/3}@{\zeta} = (z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right)}
-\pi^{-1}(z/\sqrt{3})\modBesselK{- 2/3}@{\zeta} = (z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
- (Pi)^(- 1)*(z/(sqrt(3)))*BesselK(- 2/3, (2)/(3)*(z)^((3)/(2))) = (z/3)*(BesselI(2/3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/3, (2)/(3)*(z)^((3)/(2))))
- (Pi)^(- 1)*(z/(Sqrt[3]))*BesselK[- 2/3, Divide[2,3]*(z)^(Divide[3,2])] == (z/3)*(BesselI[2/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta e^{\pi i/2}}}
(z/3)\left(\modBesselI{2/3}@{\zeta}-\modBesselI{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta e^{\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(z/3)*(BesselI(2/3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*(z/(sqrt(3)))*exp(- Pi*I/6)*HankelH1(2/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2))
(z/3)*(BesselI[2/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*(z/(Sqrt[3]))*Exp[- Pi*I/6]*HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]]
Failure Failure
Failed [2 / 7]
Result: -.8075132061-.4662179670*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: .2876791931-.6573919012*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.8075132057195985, -0.4662179666963879]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.2876791932746735, -0.6573919010090721]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta e^{\pi i/2}}}
\tfrac{1}{2}(z/\sqrt{3})e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta e^{\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*(z/(sqrt(3)))*exp(- Pi*I/6)*HankelH1(2/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2)) = (1)/(2)*(z/(sqrt(3)))*exp(- 5*Pi*I/6)*HankelH1(- 2/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2))
Divide[1,2]*(z/(Sqrt[3]))*Exp[- Pi*I/6]*HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]] == Divide[1,2]*(z/(Sqrt[3]))*Exp[- 5*Pi*I/6]*HankelH1[- 2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}\HankelH{2}{2/3}@{\zeta e^{-\pi i/2}}}
\tfrac{1}{2}(z/\sqrt{3})e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta e^{\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}\HankelH{2}{2/3}@{\zeta e^{-\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*(z/(sqrt(3)))*exp(- 5*Pi*I/6)*HankelH1(- 2/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2)) = (1)/(2)*(z/(sqrt(3)))*exp(Pi*I/6)*HankelH2(2/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))
Divide[1,2]*(z/(Sqrt[3]))*Exp[- 5*Pi*I/6]*HankelH1[- 2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]] == Divide[1,2]*(z/(Sqrt[3]))*Exp[Pi*I/6]*HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]
Failure Failure
Failed [3 / 7]
Result: .8075132066+.4662179669*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.2641265961-.1348949430*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

... skip entries to safe data
Failed [3 / 7]
Result: Complex[0.8075132057195987, 0.46621796669638804]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.26412659586991316, -0.13489494274589095]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
9.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}\HankelH{2}{2/3}@{\zeta e^{-\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{5\pi i/6}\HankelH{2}{-2/3}@{\zeta e^{-\pi i/2}}}
\tfrac{1}{2}(z/\sqrt{3})e^{\pi i/6}\HankelH{2}{2/3}@{\zeta e^{-\pi i/2}} = \tfrac{1}{2}(z/\sqrt{3})e^{5\pi i/6}\HankelH{2}{-2/3}@{\zeta e^{-\pi i/2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*(z/(sqrt(3)))*exp(Pi*I/6)*HankelH2(2/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2)) = (1)/(2)*(z/(sqrt(3)))*exp(5*Pi*I/6)*HankelH2(- 2/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))
Divide[1,2]*(z/(Sqrt[3]))*Exp[Pi*I/6]*HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]] == Divide[1,2]*(z/(Sqrt[3]))*Exp[5*Pi*I/6]*HankelH2[- 2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryBi@{z} = \sqrt{z/3}\left(\modBesselI{1/3}@{\zeta}+\modBesselI{-1/3}@{\zeta}\right)}
\AiryBi@{z} = \sqrt{z/3}\left(\modBesselI{1/3}@{\zeta}+\modBesselI{-1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryBi(z) = sqrt(z/3)*(BesselI(1/3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/3, (2)/(3)*(z)^((3)/(2))))
AiryBi[z] == Sqrt[z/3]*(BesselI[1/3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/3, Divide[2,3]*(z)^(Divide[3,2])])
Failure Failure
Failed [1 / 7]
Result: .2310642860+.4406110717*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.23106428610863416, 0.44061107136250777]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{z/3}\left(\modBesselI{1/3}@{\zeta}+\modBesselI{-1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta e^{\pi i/2}}\right)}
\sqrt{z/3}\left(\modBesselI{1/3}@{\zeta}+\modBesselI{-1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta e^{\pi i/2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sqrt(z/3)*(BesselI(1/3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*sqrt(z/3)*(exp(Pi*I/6)*HankelH1(1/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))+ exp(- Pi*I/6)*HankelH2(1/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2)))
Sqrt[z/3]*(BesselI[1/3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*Sqrt[z/3]*(Exp[Pi*I/6]*HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]+ Exp[- Pi*I/6]*HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]])
Failure Failure
Failed [7 / 7]
Result: 1.185673976+.6468773360e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 1.199319247+.6472196920e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[1.1856739752313228, 0.06468773371996589]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.1993192456185722, 0.06472196909084393]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta e^{\pi i/2}}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{-\pi i/6}\HankelH{1}{-1/3}@{\zeta e^{-\pi i/2}}+e^{\pi i/6}\HankelH{2}{-1/3}@{\zeta e^{\pi i/2}}\right)}
\tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta e^{\pi i/2}}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{-\pi i/6}\HankelH{1}{-1/3}@{\zeta e^{-\pi i/2}}+e^{\pi i/6}\HankelH{2}{-1/3}@{\zeta e^{\pi i/2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*sqrt(z/3)*(exp(Pi*I/6)*HankelH1(1/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))+ exp(- Pi*I/6)*HankelH2(1/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2))) = (1)/(2)*sqrt(z/3)*(exp(- Pi*I/6)*HankelH1(- 1/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))+ exp(Pi*I/6)*HankelH2(- 1/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2)))
Divide[1,2]*Sqrt[z/3]*(Exp[Pi*I/6]*HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]+ Exp[- Pi*I/6]*HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]]) == Divide[1,2]*Sqrt[z/3]*(Exp[- Pi*I/6]*HankelH1[- 1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]+ Exp[Pi*I/6]*HankelH2[- 1/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryBi'@{z} = (z/\sqrt{3})\left(\modBesselI{2/3}@{\zeta}+\modBesselI{-2/3}@{\zeta}\right)}
\AiryBi'@{z} = (z/\sqrt{3})\left(\modBesselI{2/3}@{\zeta}+\modBesselI{-2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff( AiryBi(z), z$(1) ) = (z/(sqrt(3)))*(BesselI(2/3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/3, (2)/(3)*(z)^((3)/(2))))
D[AiryBi[z], {z, 1}] == (z/(Sqrt[3]))*(BesselI[2/3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/3, Divide[2,3]*(z)^(Divide[3,2])])
Failure Failure
Failed [1 / 7]
Result: .5692656477-.750312059e-1*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.5692656479003549, -0.07503120598537287]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z/\sqrt{3})\left(\modBesselI{2/3}@{\zeta}+\modBesselI{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta e^{\pi i/2}}\right)}
(z/\sqrt{3})\left(\modBesselI{2/3}@{\zeta}+\modBesselI{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta e^{\pi i/2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(z/(sqrt(3)))*(BesselI(2/3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*(z/(sqrt(3)))*(exp(Pi*I/3)*HankelH1(2/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))+ exp(- Pi*I/3)*HankelH2(2/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2)))
(z/(Sqrt[3]))*(BesselI[2/3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*(z/(Sqrt[3]))*(Exp[Pi*I/3]*HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]+ Exp[- Pi*I/3]*HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]])
Failure Failure
Failed [7 / 7]
Result: .7341782379+.1916601474*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .6988938865-.1407017700*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.7341782376555157, 0.19166014735752115]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.6988938863252578, -0.14070176990144198]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta e^{\pi i/2}}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/3}\HankelH{1}{-2/3}@{\zeta e^{-\pi i/2}}+e^{\pi i/3}\HankelH{2}{-2/3}@{\zeta e^{\pi i/2}}\right)}
\tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta e^{-\pi i/2}}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta e^{\pi i/2}}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/3}\HankelH{1}{-2/3}@{\zeta e^{-\pi i/2}}+e^{\pi i/3}\HankelH{2}{-2/3}@{\zeta e^{\pi i/2}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*(z/(sqrt(3)))*(exp(Pi*I/3)*HankelH1(2/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))+ exp(- Pi*I/3)*HankelH2(2/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2))) = (1)/(2)*(z/(sqrt(3)))*(exp(- Pi*I/3)*HankelH1(- 2/3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/2))+ exp(Pi*I/3)*HankelH2(- 2/3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/2)))
Divide[1,2]*(z/(Sqrt[3]))*(Exp[Pi*I/3]*HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]+ Exp[- Pi*I/3]*HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]]) == Divide[1,2]*(z/(Sqrt[3]))*(Exp[- Pi*I/3]*HankelH1[- 2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/2]]+ Exp[Pi*I/3]*HankelH2[- 2/3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/2]])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi@{-z} = (\sqrt{z}/3)\left(\BesselJ{1/3}@{\zeta}+\BesselJ{-1/3}@{\zeta}\right)}
\AiryAi@{-z} = (\sqrt{z}/3)\left(\BesselJ{1/3}@{\zeta}+\BesselJ{-1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryAi(- z) = (sqrt(z)/3)*(BesselJ(1/3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(- 1/3, (2)/(3)*(z)^((3)/(2))))
AiryAi[- z] == (Sqrt[z]/3)*(BesselJ[1/3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[- 1/3, Divide[2,3]*(z)^(Divide[3,2])])
Failure Failure
Failed [1 / 7]
Result: .309647027e-1+.3571238073*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.03096470287449324, 0.3571238071948327]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\sqrt{z}/3)\left(\BesselJ{1/3}@{\zeta}+\BesselJ{-1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta}\right)}
(\sqrt{z}/3)\left(\BesselJ{1/3}@{\zeta}+\BesselJ{-1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(sqrt(z)/3)*(BesselJ(1/3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(- 1/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*sqrt(z/3)*(exp(Pi*I/6)*HankelH1(1/3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/6)*HankelH2(1/3, (2)/(3)*(z)^((3)/(2))))
(Sqrt[z]/3)*(BesselJ[1/3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*Sqrt[z/3]*(Exp[Pi*I/6]*HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/6]*HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{-\pi i/6}\HankelH{1}{-1/3}@{\zeta}+e^{\pi i/6}\HankelH{2}{-1/3}@{\zeta}\right)}
\tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/6}\HankelH{1}{1/3}@{\zeta}+e^{-\pi i/6}\HankelH{2}{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{-\pi i/6}\HankelH{1}{-1/3}@{\zeta}+e^{\pi i/6}\HankelH{2}{-1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*sqrt(z/3)*(exp(Pi*I/6)*HankelH1(1/3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/6)*HankelH2(1/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*sqrt(z/3)*(exp(- Pi*I/6)*HankelH1(- 1/3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/6)*HankelH2(- 1/3, (2)/(3)*(z)^((3)/(2))))
Divide[1,2]*Sqrt[z/3]*(Exp[Pi*I/6]*HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/6]*HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*Sqrt[z/3]*(Exp[- Pi*I/6]*HankelH1[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/6]*HankelH2[- 1/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi'@{-z} = (z/3)\left(\BesselJ{2/3}@{\zeta}-\BesselJ{-2/3}@{\zeta}\right)}
\AiryAi'@{-z} = (z/3)\left(\BesselJ{2/3}@{\zeta}-\BesselJ{-2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
subs( temp=- z, diff( AiryAi(temp), temp$(1) ) ) = (z/3)*(BesselJ(2/3, (2)/(3)*(z)^((3)/(2)))- BesselJ(- 2/3, (2)/(3)*(z)^((3)/(2))))
(D[AiryAi[temp], {temp, 1}]/.temp-> - z) == (z/3)*(BesselJ[2/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[- 2/3, Divide[2,3]*(z)^(Divide[3,2])])
Failure Failure
Failed [7 / 7]
Result: .7438814497-.1824830770*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .4379687237+.3495995698*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.7438814497662649, -0.18248307701953514]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4379687237504881, 0.3495995697137311]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.6.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z/3)\left(\BesselJ{2/3}@{\zeta}-\BesselJ{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta}+e^{\pi i/6}\HankelH{2}{2/3}@{\zeta}\right)}
(z/3)\left(\BesselJ{2/3}@{\zeta}-\BesselJ{-2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta}+e^{\pi i/6}\HankelH{2}{2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(z/3)*(BesselJ(2/3, (2)/(3)*(z)^((3)/(2)))- BesselJ(- 2/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*(z/(sqrt(3)))*(exp(- Pi*I/6)*HankelH1(2/3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/6)*HankelH2(2/3, (2)/(3)*(z)^((3)/(2))))
(z/3)*(BesselJ[2/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*(z/(Sqrt[3]))*(Exp[- Pi*I/6]*HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/6]*HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta}+e^{\pi i/6}\HankelH{2}{2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta}+e^{5\pi i/6}\HankelH{2}{-2/3}@{\zeta}\right)}
\tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/6}\HankelH{1}{2/3}@{\zeta}+e^{\pi i/6}\HankelH{2}{2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-5\pi i/6}\HankelH{1}{-2/3}@{\zeta}+e^{5\pi i/6}\HankelH{2}{-2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*(z/(sqrt(3)))*(exp(- Pi*I/6)*HankelH1(2/3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/6)*HankelH2(2/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*(z/(sqrt(3)))*(exp(- 5*Pi*I/6)*HankelH1(- 2/3, (2)/(3)*(z)^((3)/(2)))+ exp(5*Pi*I/6)*HankelH2(- 2/3, (2)/(3)*(z)^((3)/(2))))
Divide[1,2]*(z/(Sqrt[3]))*(Exp[- Pi*I/6]*HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/6]*HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*(z/(Sqrt[3]))*(Exp[- 5*Pi*I/6]*HankelH1[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[5*Pi*I/6]*HankelH2[- 2/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryBi@{-z} = \sqrt{z/3}\left(\BesselJ{-1/3}@{\zeta}-\BesselJ{1/3}@{\zeta}\right)}
\AiryBi@{-z} = \sqrt{z/3}\left(\BesselJ{-1/3}@{\zeta}-\BesselJ{1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryBi(- z) = sqrt(z/3)*(BesselJ(- 1/3, (2)/(3)*(z)^((3)/(2)))- BesselJ(1/3, (2)/(3)*(z)^((3)/(2))))
AiryBi[- z] == Sqrt[z/3]*(BesselJ[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[1/3, Divide[2,3]*(z)^(Divide[3,2])])
Failure Failure
Failed [1 / 7]
Result: 1.603467898+.7479320463*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[1.6034678974530832, 0.7479320460938138]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{z/3}\left(\BesselJ{-1/3}@{\zeta}-\BesselJ{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta}+e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta}\right)}
\sqrt{z/3}\left(\BesselJ{-1/3}@{\zeta}-\BesselJ{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta}+e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sqrt(z/3)*(BesselJ(- 1/3, (2)/(3)*(z)^((3)/(2)))- BesselJ(1/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*sqrt(z/3)*(exp(2*Pi*I/3)*HankelH1(1/3, (2)/(3)*(z)^((3)/(2)))+ exp(- 2*Pi*I/3)*HankelH2(1/3, (2)/(3)*(z)^((3)/(2))))
Sqrt[z/3]*(BesselJ[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[1/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*Sqrt[z/3]*(Exp[2*Pi*I/3]*HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- 2*Pi*I/3]*HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\sqrt{z/3}\left(e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta}+e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta}+e^{-\pi i/3}\HankelH{2}{-1/3}@{\zeta}\right)}
\tfrac{1}{2}\sqrt{z/3}\left(e^{2\pi i/3}\HankelH{1}{1/3}@{\zeta}+e^{-2\pi i/3}\HankelH{2}{1/3}@{\zeta}\right) = \tfrac{1}{2}\sqrt{z/3}\left(e^{\pi i/3}\HankelH{1}{-1/3}@{\zeta}+e^{-\pi i/3}\HankelH{2}{-1/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*sqrt(z/3)*(exp(2*Pi*I/3)*HankelH1(1/3, (2)/(3)*(z)^((3)/(2)))+ exp(- 2*Pi*I/3)*HankelH2(1/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*sqrt(z/3)*(exp(Pi*I/3)*HankelH1(- 1/3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/3)*HankelH2(- 1/3, (2)/(3)*(z)^((3)/(2))))
Divide[1,2]*Sqrt[z/3]*(Exp[2*Pi*I/3]*HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- 2*Pi*I/3]*HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*Sqrt[z/3]*(Exp[Pi*I/3]*HankelH1[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/3]*HankelH2[- 1/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryBi'@{-z} = (z/\sqrt{3})\left(\BesselJ{-2/3}@{\zeta}+\BesselJ{2/3}@{\zeta}\right)}
\AiryBi'@{-z} = (z/\sqrt{3})\left(\BesselJ{-2/3}@{\zeta}+\BesselJ{2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
subs( temp=- z, diff( AiryBi(temp), temp$(1) ) ) = (z/(sqrt(3)))*(BesselJ(- 2/3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(2/3, (2)/(3)*(z)^((3)/(2))))
(D[AiryBi[temp], {temp, 1}]/.temp-> - z) == (z/(Sqrt[3]))*(BesselJ[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[2/3, Divide[2,3]*(z)^(Divide[3,2])])
Failure Failure
Failed [7 / 7]
Result: -.4079506518-.4001199315*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .5604204721-.1077527266*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[-0.4079506515473492, -0.40011993153434466]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5604204722153456, -0.10775272665850918]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (z/\sqrt{3})\left(\BesselJ{-2/3}@{\zeta}+\BesselJ{2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta}\right)}
(z/\sqrt{3})\left(\BesselJ{-2/3}@{\zeta}+\BesselJ{2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(z/(sqrt(3)))*(BesselJ(- 2/3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(2/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*(z/(sqrt(3)))*(exp(Pi*I/3)*HankelH1(2/3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/3)*HankelH2(2/3, (2)/(3)*(z)^((3)/(2))))
(z/(Sqrt[3]))*(BesselJ[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[2/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*(z/(Sqrt[3]))*(Exp[Pi*I/3]*HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/3]*HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/3}\HankelH{1}{-2/3}@{\zeta}+e^{\pi i/3}\HankelH{2}{-2/3}@{\zeta}\right)}
\tfrac{1}{2}(z/\sqrt{3})\left(e^{\pi i/3}\HankelH{1}{2/3}@{\zeta}+e^{-\pi i/3}\HankelH{2}{2/3}@{\zeta}\right) = \tfrac{1}{2}(z/\sqrt{3})\left(e^{-\pi i/3}\HankelH{1}{-2/3}@{\zeta}+e^{\pi i/3}\HankelH{2}{-2/3}@{\zeta}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*(z/(sqrt(3)))*(exp(Pi*I/3)*HankelH1(2/3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/3)*HankelH2(2/3, (2)/(3)*(z)^((3)/(2)))) = (1)/(2)*(z/(sqrt(3)))*(exp(- Pi*I/3)*HankelH1(- 2/3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/3)*HankelH2(- 2/3, (2)/(3)*(z)^((3)/(2))))
Divide[1,2]*(z/(Sqrt[3]))*(Exp[Pi*I/3]*HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/3]*HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])]) == Divide[1,2]*(z/(Sqrt[3]))*(Exp[- Pi*I/3]*HankelH1[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/3]*HankelH2[- 2/3, Divide[2,3]*(z)^(Divide[3,2])])
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{+ 1/3}@{\zeta} = \tfrac{1}{2}\sqrt{3/z}\left(\sqrt{3}\AiryAi@{-z}-\AiryBi@{-z}\right)}
\BesselJ{+ 1/3}@{\zeta} = \tfrac{1}{2}\sqrt{3/z}\left(\sqrt{3}\AiryAi@{-z}-\AiryBi@{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselJ(+ 1/3, (2)/(3)*(z)^((3)/(2))) = (1)/(2)*sqrt(3/z)*(sqrt(3)*AiryAi(- z)- AiryBi(- z))
BesselJ[+ 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,2]*Sqrt[3/z]*(Sqrt[3]*AiryAi[- z]- AiryBi[- z])
Failure Failure
Failed [1 / 7]
Result: .2391614268+1.325461347*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.23916142675433638, 1.3254613471266568]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{- 1/3}@{\zeta} = \tfrac{1}{2}\sqrt{3/z}\left(\sqrt{3}\AiryAi@{-z}+\AiryBi@{-z}\right)}
\BesselJ{- 1/3}@{\zeta} = \tfrac{1}{2}\sqrt{3/z}\left(\sqrt{3}\AiryAi@{-z}+\AiryBi@{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselJ(- 1/3, (2)/(3)*(z)^((3)/(2))) = (1)/(2)*sqrt(3/z)*(sqrt(3)*AiryAi(- z)+ AiryBi(- z))
BesselJ[- 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,2]*Sqrt[3/z]*(Sqrt[3]*AiryAi[- z]+ AiryBi[- z])
Failure Failure
Failed [1 / 7]
Result: .7716611346-1.692481494*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.7716611344125851, -1.6924814940408082]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{+ 2/3}@{\zeta} = \tfrac{1}{2}(\sqrt{3}/z)\left(+\sqrt{3}\AiryAi'@{-z}+\AiryBi'@{-z}\right)}
\BesselJ{+ 2/3}@{\zeta} = \tfrac{1}{2}(\sqrt{3}/z)\left(+\sqrt{3}\AiryAi'@{-z}+\AiryBi'@{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselJ(+ 2/3, (2)/(3)*(z)^((3)/(2))) = (1)/(2)*(sqrt(3)/z)*(+sqrt(3)*subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=- z, diff( AiryBi(temp), temp$(1) ) ))
BesselJ[+ 2/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,2]*(Sqrt[3]/z)*(+Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> - z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> - z))
Failure Failure
Failed [1 / 7]
Result: .4073114590+.8284435869*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.40731145887570114, 0.8284435866207246]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{- 2/3}@{\zeta} = \tfrac{1}{2}(\sqrt{3}/z)\left(-\sqrt{3}\AiryAi'@{-z}+\AiryBi'@{-z}\right)}
\BesselJ{- 2/3}@{\zeta} = \tfrac{1}{2}(\sqrt{3}/z)\left(-\sqrt{3}\AiryAi'@{-z}+\AiryBi'@{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselJ(- 2/3, (2)/(3)*(z)^((3)/(2))) = (1)/(2)*(sqrt(3)/z)*(-sqrt(3)*subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=- z, diff( AiryBi(temp), temp$(1) ) ))
BesselJ[- 2/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,2]*(Sqrt[3]/z)*(-Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> - z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> - z))
Failure Failure
Failed [1 / 7]
Result: 1.051066782-.9245173022*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[1.0510667819735242, -0.9245173024955249]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{+ 1/3}@{\zeta} = \tfrac{1}{2}\sqrt{3/z}\left(-\sqrt{3}\AiryAi@{z}+\AiryBi@{z}\right)}
\modBesselI{+ 1/3}@{\zeta} = \tfrac{1}{2}\sqrt{3/z}\left(-\sqrt{3}\AiryAi@{z}+\AiryBi@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselI(+ 1/3, (2)/(3)*(z)^((3)/(2))) = (1)/(2)*sqrt(3/z)*(-sqrt(3)*AiryAi(z)+ AiryBi(z))
BesselI[+ 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,2]*Sqrt[3/z]*(-Sqrt[3]*AiryAi[z]+ AiryBi[z])
Failure Failure
Failed [1 / 7]
Result: .4556108026+1.267463912*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.4556108023887421, 1.2674639117231967]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{- 1/3}@{\zeta} = \tfrac{1}{2}\sqrt{3/z}\left(+\sqrt{3}\AiryAi@{z}+\AiryBi@{z}\right)}
\modBesselI{- 1/3}@{\zeta} = \tfrac{1}{2}\sqrt{3/z}\left(+\sqrt{3}\AiryAi@{z}+\AiryBi@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselI(- 1/3, (2)/(3)*(z)^((3)/(2))) = (1)/(2)*sqrt(3/z)*(+sqrt(3)*AiryAi(z)+ AiryBi(z))
BesselI[- 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,2]*Sqrt[3/z]*(+Sqrt[3]*AiryAi[z]+ AiryBi[z])
Failure Failure
Failed [1 / 7]
Result: .1779626013-1.851562537*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.1779626015059873, -1.8515625364806731]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{+ 2/3}@{\zeta} = \tfrac{1}{2}(\sqrt{3}/z)\left(+\sqrt{3}\AiryAi'@{z}+\AiryBi'@{z}\right)}
\modBesselI{+ 2/3}@{\zeta} = \tfrac{1}{2}(\sqrt{3}/z)\left(+\sqrt{3}\AiryAi'@{z}+\AiryBi'@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselI(+ 2/3, (2)/(3)*(z)^((3)/(2))) = (1)/(2)*(sqrt(3)/z)*(+sqrt(3)*diff( AiryAi(z), z$(1) )+ diff( AiryBi(z), z$(1) ))
BesselI[+ 2/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,2]*(Sqrt[3]/z)*(+Sqrt[3]*D[AiryAi[z], {z, 1}]+ D[AiryBi[z], {z, 1}])
Failure Failure
Failed [1 / 7]
Result: .5137974625+.7669638641*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.5137974621779913, 0.7669638639492199]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{- 2/3}@{\zeta} = \tfrac{1}{2}(\sqrt{3}/z)\left(-\sqrt{3}\AiryAi'@{z}+\AiryBi'@{z}\right)}
\modBesselI{- 2/3}@{\zeta} = \tfrac{1}{2}(\sqrt{3}/z)\left(-\sqrt{3}\AiryAi'@{z}+\AiryBi'@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselI(- 2/3, (2)/(3)*(z)^((3)/(2))) = (1)/(2)*(sqrt(3)/z)*(-sqrt(3)*diff( AiryAi(z), z$(1) )+ diff( AiryBi(z), z$(1) ))
BesselI[- 2/3, Divide[2,3]*(z)^(Divide[3,2])] == Divide[1,2]*(Sqrt[3]/z)*(-Sqrt[3]*D[AiryAi[z], {z, 1}]+ D[AiryBi[z], {z, 1}])
Failure Failure
Failed [1 / 7]
Result: .2751220789-1.372509185*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.2751220792126252, -1.372509185510794]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{+ 1/3}@{\zeta} = \pi\sqrt{3/z}\AiryAi@{z}}
\modBesselK{+ 1/3}@{\zeta} = \pi\sqrt{3/z}\AiryAi@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(+ 1/3, (2)/(3)*(z)^((3)/(2))) = Pi*sqrt(3/z)*AiryAi(z)
BesselK[+ 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Pi*Sqrt[3/z]*AiryAi[z]
Failure Failure
Failed [1 / 7]
Result: -.5035981308-5.657288190*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.503598130241915, -5.657288188781889]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{- 1/3}@{\zeta} = \pi\sqrt{3/z}\AiryAi@{z}}
\modBesselK{- 1/3}@{\zeta} = \pi\sqrt{3/z}\AiryAi@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(- 1/3, (2)/(3)*(z)^((3)/(2))) = Pi*sqrt(3/z)*AiryAi(z)
BesselK[- 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Pi*Sqrt[3/z]*AiryAi[z]
Failure Failure
Failed [1 / 7]
Result: -.5035981308-5.657288190*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.503598130241915, -5.657288188781889]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{+ 2/3}@{\zeta} = -\pi(\sqrt{3}/z)\AiryAi'@{z}}
\modBesselK{+ 2/3}@{\zeta} = -\pi(\sqrt{3}/z)\AiryAi'@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(+ 2/3, (2)/(3)*(z)^((3)/(2))) = - Pi*(sqrt(3)/z)*diff( AiryAi(z), z$(1) )
BesselK[+ 2/3, Divide[2,3]*(z)^(Divide[3,2])] == - Pi*(Sqrt[3]/z)*D[AiryAi[z], {z, 1}]
Failure Failure
Failed [1 / 7]
Result: -.4329092589-3.880574857*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.43290925788093926, -3.8805748569068164]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{- 2/3}@{\zeta} = -\pi(\sqrt{3}/z)\AiryAi'@{z}}
\modBesselK{- 2/3}@{\zeta} = -\pi(\sqrt{3}/z)\AiryAi'@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
BesselK(- 2/3, (2)/(3)*(z)^((3)/(2))) = - Pi*(sqrt(3)/z)*diff( AiryAi(z), z$(1) )
BesselK[- 2/3, Divide[2,3]*(z)^(Divide[3,2])] == - Pi*(Sqrt[3]/z)*D[AiryAi[z], {z, 1}]
Failure Failure
Failed [1 / 7]
Result: -.4329092589-3.880574857*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.43290925788093926, -3.8805748569068164]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{1/3}@{\zeta} = e^{-\pi i/3}\HankelH{1}{-1/3}@{\zeta}}
\HankelH{1}{1/3}@{\zeta} = e^{-\pi i/3}\HankelH{1}{-1/3}@{\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
HankelH1(1/3, (2)/(3)*(z)^((3)/(2))) = exp(- Pi*I/3)*HankelH1(- 1/3, (2)/(3)*(z)^((3)/(2)))
HankelH1[1/3, Divide[2,3]*(z)^(Divide[3,2])] == Exp[- Pi*I/3]*HankelH1[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\pi i/3}\HankelH{1}{-1/3}@{\zeta} = e^{-\pi i/6}\sqrt{3/z}\left(\AiryAi@{-z}-i\AiryBi@{-z}\right)}
e^{-\pi i/3}\HankelH{1}{-1/3}@{\zeta} = e^{-\pi i/6}\sqrt{3/z}\left(\AiryAi@{-z}-i\AiryBi@{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
exp(- Pi*I/3)*HankelH1(- 1/3, (2)/(3)*(z)^((3)/(2))) = exp(- Pi*I/6)*sqrt(3/z)*(AiryAi(- z)- I*AiryBi(- z))
Exp[- Pi*I/3]*HankelH1[- 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Exp[- Pi*I/6]*Sqrt[3/z]*(AiryAi[- z]- I*AiryBi[- z])
Failure Failure
Failed [1 / 7]
Result: -2.480403332+.5725037338*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-2.480403331175524, 0.5725037338904919]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{2/3}@{\zeta} = e^{-2\pi i/3}\HankelH{1}{-2/3}@{\zeta}}
\HankelH{1}{2/3}@{\zeta} = e^{-2\pi i/3}\HankelH{1}{-2/3}@{\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
HankelH1(2/3, (2)/(3)*(z)^((3)/(2))) = exp(- 2*Pi*I/3)*HankelH1(- 2/3, (2)/(3)*(z)^((3)/(2)))
HankelH1[2/3, Divide[2,3]*(z)^(Divide[3,2])] == Exp[- 2*Pi*I/3]*HankelH1[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-2\pi i/3}\HankelH{1}{-2/3}@{\zeta} = e^{\pi i/6}(\sqrt{3}/z)\left(\AiryAi'@{-z}-i\AiryBi'@{-z}\right)}
e^{-2\pi i/3}\HankelH{1}{-2/3}@{\zeta} = e^{\pi i/6}(\sqrt{3}/z)\left(\AiryAi'@{-z}-i\AiryBi'@{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
exp(- 2*Pi*I/3)*HankelH1(- 2/3, (2)/(3)*(z)^((3)/(2))) = exp(Pi*I/6)*(sqrt(3)/z)*(subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )- I*subs( temp=- z, diff( AiryBi(temp), temp$(1) ) ))
Exp[- 2*Pi*I/3]*HankelH1[- 2/3, Divide[2,3]*(z)^(Divide[3,2])] == Exp[Pi*I/6]*(Sqrt[3]/z)*((D[AiryAi[temp], {temp, 1}]/.temp-> - z)- I*(D[AiryBi[temp], {temp, 1}]/.temp-> - z))
Failure Failure
Failed [1 / 7]
Result: -.1819270397-.6203851736*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.18192704031292045, -0.6203851728225562]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{1/3}@{\zeta} = e^{\pi i/3}\HankelH{2}{-1/3}@{\zeta}}
\HankelH{2}{1/3}@{\zeta} = e^{\pi i/3}\HankelH{2}{-1/3}@{\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
HankelH2(1/3, (2)/(3)*(z)^((3)/(2))) = exp(Pi*I/3)*HankelH2(- 1/3, (2)/(3)*(z)^((3)/(2)))
HankelH2[1/3, Divide[2,3]*(z)^(Divide[3,2])] == Exp[Pi*I/3]*HankelH2[- 1/3, Divide[2,3]*(z)^(Divide[3,2])]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\pi i/3}\HankelH{2}{-1/3}@{\zeta} = e^{\pi i/6}\sqrt{3/z}\left(\AiryAi@{-z}+i\AiryBi@{-z}\right)}
e^{\pi i/3}\HankelH{2}{-1/3}@{\zeta} = e^{\pi i/6}\sqrt{3/z}\left(\AiryAi@{-z}+i\AiryBi@{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
exp(Pi*I/3)*HankelH2(- 1/3, (2)/(3)*(z)^((3)/(2))) = exp(Pi*I/6)*sqrt(3/z)*(AiryAi(- z)+ I*AiryBi(- z))
Exp[Pi*I/3]*HankelH2[- 1/3, Divide[2,3]*(z)^(Divide[3,2])] == Exp[Pi*I/6]*Sqrt[3/z]*(AiryAi[- z]+ I*AiryBi[- z])
Failure Failure
Failed [1 / 7]
Result: 2.958726185+2.078418961*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[2.958726184684197, 2.078418960362822]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{2/3}@{\zeta} = e^{2\pi i/3}\HankelH{2}{-2/3}@{\zeta}}
\HankelH{2}{2/3}@{\zeta} = e^{2\pi i/3}\HankelH{2}{-2/3}@{\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
HankelH2(2/3, (2)/(3)*(z)^((3)/(2))) = exp(2*Pi*I/3)*HankelH2(- 2/3, (2)/(3)*(z)^((3)/(2)))
HankelH2[2/3, Divide[2,3]*(z)^(Divide[3,2])] == Exp[2*Pi*I/3]*HankelH2[- 2/3, Divide[2,3]*(z)^(Divide[3,2])]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.6.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{2\pi i/3}\HankelH{2}{-2/3}@{\zeta} = e^{-\pi i/6}(\sqrt{3}/z)\left(\AiryAi'@{-z}+i\AiryBi'@{-z}\right)}
e^{2\pi i/3}\HankelH{2}{-2/3}@{\zeta} = e^{-\pi i/6}(\sqrt{3}/z)\left(\AiryAi'@{-z}+i\AiryBi'@{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
exp(2*Pi*I/3)*HankelH2(- 2/3, (2)/(3)*(z)^((3)/(2))) = exp(- Pi*I/6)*(sqrt(3)/z)*(subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )+ I*subs( temp=- z, diff( AiryBi(temp), temp$(1) ) ))
Exp[2*Pi*I/3]*HankelH2[- 2/3, Divide[2,3]*(z)^(Divide[3,2])] == Exp[- Pi*I/6]*(Sqrt[3]/z)*((D[AiryAi[temp], {temp, 1}]/.temp-> - z)+ I*(D[AiryBi[temp], {temp, 1}]/.temp-> - z))
Failure Failure
Failed [1 / 7]
Result: .9965499581+2.277272347*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.996549958064323, 2.277272346064005]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi@{z} = \tfrac{1}{2}\pi^{-1/2}z^{-1/4}\WhittakerconfhyperW{0}{1/3}@{2\zeta}}
\AiryAi@{z} = \tfrac{1}{2}\pi^{-1/2}z^{-1/4}\WhittakerconfhyperW{0}{1/3}@{2\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryAi(z) = (1)/(2)*(Pi)^(- 1/2)* (z)^(- 1/4)* WhittakerW(0, 1/3, 2*(2)/(3)*(z)^((3)/(2)))
AiryAi[z] == Divide[1,2]*(Pi)^(- 1/2)* (z)^(- 1/4)* WhittakerW[0, 1/3, 2*Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [1 / 7]
Result: .1468703571-.7702142875e-1*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.1468703571208359, -0.07702142870287806]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\pi^{-1/2}z^{-1/4}\WhittakerconfhyperW{0}{1/3}@{2\zeta} = 3^{-1/6}\pi^{-1/2}\zeta^{2/3}e^{-\zeta}\KummerconfhyperU@{\tfrac{5}{6}}{\tfrac{5}{3}}{2\zeta}}
\tfrac{1}{2}\pi^{-1/2}z^{-1/4}\WhittakerconfhyperW{0}{1/3}@{2\zeta} = 3^{-1/6}\pi^{-1/2}\zeta^{2/3}e^{-\zeta}\KummerconfhyperU@{\tfrac{5}{6}}{\tfrac{5}{3}}{2\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2)*(Pi)^(- 1/2)* (z)^(- 1/4)* WhittakerW(0, 1/3, 2*(2)/(3)*(z)^((3)/(2))) = (3)^(- 1/6)* (Pi)^(- 1/2)*(2)/(3)*((z)^((3)/(2)))^(2/3)* exp(-(2)/(3)*(z)^((3)/(2)))*KummerU((5)/(6), (5)/(3), 2*(2)/(3)*(z)^((3)/(2)))
Divide[1,2]*(Pi)^(- 1/2)* (z)^(- 1/4)* WhittakerW[0, 1/3, 2*Divide[2,3]*(z)^(Divide[3,2])] == (3)^(- 1/6)* (Pi)^(- 1/2)*Divide[2,3]*((z)^(Divide[3,2]))^(2/3)* Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricU[Divide[5,6], Divide[5,3], 2*Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [7 / 7]
Result: .177161419e-1-.1121123152e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .703717954e-1-.307544046e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.017716141952820785, -0.011211231532459925]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.07037179551766398, -0.03075440448392741]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.6.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi'@{z} = -\tfrac{1}{2}\pi^{-1/2}z^{1/4}\WhittakerconfhyperW{0}{2/3}@{2\zeta}}
\AiryAi'@{z} = -\tfrac{1}{2}\pi^{-1/2}z^{1/4}\WhittakerconfhyperW{0}{2/3}@{2\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff( AiryAi(z), z$(1) ) = -(1)/(2)*(Pi)^(- 1/2)* (z)^(1/4)* WhittakerW(0, 2/3, 2*(2)/(3)*(z)^((3)/(2)))
D[AiryAi[z], {z, 1}] == -Divide[1,2]*(Pi)^(- 1/2)* (z)^(1/4)* WhittakerW[0, 2/3, 2*Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [1 / 7]
Result: -.250104019e-1-.1897552162*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.025010401995124304, -0.18975521596678477]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\tfrac{1}{2}\pi^{-1/2}z^{1/4}\WhittakerconfhyperW{0}{2/3}@{2\zeta} = -3^{1/6}\pi^{-1/2}\zeta^{4/3}e^{-\zeta}\KummerconfhyperU@{\tfrac{7}{6}}{\tfrac{7}{3}}{2\zeta}}
-\tfrac{1}{2}\pi^{-1/2}z^{1/4}\WhittakerconfhyperW{0}{2/3}@{2\zeta} = -3^{1/6}\pi^{-1/2}\zeta^{4/3}e^{-\zeta}\KummerconfhyperU@{\tfrac{7}{6}}{\tfrac{7}{3}}{2\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
-(1)/(2)*(Pi)^(- 1/2)* (z)^(1/4)* WhittakerW(0, 2/3, 2*(2)/(3)*(z)^((3)/(2))) = - (3)^(1/6)* (Pi)^(- 1/2)*(2)/(3)*((z)^((3)/(2)))^(4/3)* exp(-(2)/(3)*(z)^((3)/(2)))*KummerU((7)/(6), (7)/(3), 2*(2)/(3)*(z)^((3)/(2)))
-Divide[1,2]*(Pi)^(- 1/2)* (z)^(1/4)* WhittakerW[0, 2/3, 2*Divide[2,3]*(z)^(Divide[3,2])] == - (3)^(1/6)* (Pi)^(- 1/2)*Divide[2,3]*((z)^(Divide[3,2]))^(4/3)* Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricU[Divide[7,6], Divide[7,3], 2*Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [7 / 7]
Result: .255909826e-1-.1059568228e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .641870571e-1+.237615168e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.025590982799820167, -0.01059568227344454]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.06418705631415383, 0.02376151710604532]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.6.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryBi@{z} = \frac{1}{2^{1/3}\EulerGamma@{\tfrac{2}{3}}}z^{-1/4}\WhittakerconfhyperM{0}{-1/3}@{2\zeta}+\frac{3}{2^{5/3}\EulerGamma@{\tfrac{1}{3}}}z^{-1/4}\WhittakerconfhyperM{0}{1/3}@{2\zeta}}
\AiryBi@{z} = \frac{1}{2^{1/3}\EulerGamma@{\tfrac{2}{3}}}z^{-1/4}\WhittakerconfhyperM{0}{-1/3}@{2\zeta}+\frac{3}{2^{5/3}\EulerGamma@{\tfrac{1}{3}}}z^{-1/4}\WhittakerconfhyperM{0}{1/3}@{2\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryBi(z) = (1)/((2)^(1/3)* GAMMA((2)/(3)))*(z)^(- 1/4)* WhittakerM(0, - 1/3, 2*(2)/(3)*(z)^((3)/(2)))+(3)/((2)^(5/3)* GAMMA((1)/(3)))*(z)^(- 1/4)* WhittakerM(0, 1/3, 2*(2)/(3)*(z)^((3)/(2)))
AiryBi[z] == Divide[1,(2)^(1/3)* Gamma[Divide[2,3]]]*(z)^(- 1/4)* WhittakerM[0, - 1/3, 2*Divide[2,3]*(z)^(Divide[3,2])]+Divide[3,(2)^(5/3)* Gamma[Divide[1,3]]]*(z)^(- 1/4)* WhittakerM[0, 1/3, 2*Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [1 / 7]
Result: .1796919595-1.028202947*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.17969195970609464, -1.0282029471418963]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryBi'@{z} = \frac{2^{1/3}}{\EulerGamma@{\tfrac{1}{3}}}z^{1/4}\WhittakerconfhyperM{0}{-2/3}@{2\zeta}+\frac{3}{2^{10/3}\EulerGamma@{\tfrac{2}{3}}}z^{1/4}\WhittakerconfhyperM{0}{2/3}@{2\zeta}}
\AiryBi'@{z} = \frac{2^{1/3}}{\EulerGamma@{\tfrac{1}{3}}}z^{1/4}\WhittakerconfhyperM{0}{-2/3}@{2\zeta}+\frac{3}{2^{10/3}\EulerGamma@{\tfrac{2}{3}}}z^{1/4}\WhittakerconfhyperM{0}{2/3}@{2\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff( AiryBi(z), z$(1) ) = ((2)^(1/3))/(GAMMA((1)/(3)))*(z)^(1/4)* WhittakerM(0, - 2/3, 2*(2)/(3)*(z)^((3)/(2)))+(3)/((2)^(10/3)* GAMMA((2)/(3)))*(z)^(1/4)* WhittakerM(0, 2/3, 2*(2)/(3)*(z)^((3)/(2)))
D[AiryBi[z], {z, 1}] == Divide[(2)^(1/3),Gamma[Divide[1,3]]]*(z)^(1/4)* WhittakerM[0, - 2/3, 2*Divide[2,3]*(z)^(Divide[3,2])]+Divide[3,(2)^(10/3)* Gamma[Divide[2,3]]]*(z)^(1/4)* WhittakerM[0, 2/3, 2*Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [1 / 7]
Result: .6573919012+.2876791929*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[0.6573919010090719, 0.2876791932746734]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

9.6.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryBi@{z} = \frac{1}{3^{1/6}\EulerGamma@{\tfrac{2}{3}}}e^{-\zeta}\genhyperF{1}{1}@{\tfrac{1}{6}}{\tfrac{1}{3}}{2\zeta}+\frac{3^{5/6}}{2^{2/3}\EulerGamma@{\tfrac{1}{3}}}\zeta^{2/3}e^{-\zeta}\genhyperF{1}{1}@{\tfrac{5}{6}}{\tfrac{5}{3}}{2\zeta}}
\AiryBi@{z} = \frac{1}{3^{1/6}\EulerGamma@{\tfrac{2}{3}}}e^{-\zeta}\genhyperF{1}{1}@{\tfrac{1}{6}}{\tfrac{1}{3}}{2\zeta}+\frac{3^{5/6}}{2^{2/3}\EulerGamma@{\tfrac{1}{3}}}\zeta^{2/3}e^{-\zeta}\genhyperF{1}{1}@{\tfrac{5}{6}}{\tfrac{5}{3}}{2\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryBi(z) = (1)/((3)^(1/6)* GAMMA((2)/(3)))*exp(-(2)/(3)*(z)^((3)/(2)))*hypergeom([(1)/(6)], [(1)/(3)], 2*(2)/(3)*(z)^((3)/(2)))+((3)^(5/6))/((2)^(2/3)* GAMMA((1)/(3)))*(2)/(3)*((z)^((3)/(2)))^(2/3)* exp(-(2)/(3)*(z)^((3)/(2)))*hypergeom([(5)/(6)], [(5)/(3)], 2*(2)/(3)*(z)^((3)/(2)))
AiryBi[z] == Divide[1,(3)^(1/6)* Gamma[Divide[2,3]]]*Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricPFQ[{Divide[1,6]}, {Divide[1,3]}, 2*Divide[2,3]*(z)^(Divide[3,2])]+Divide[(3)^(5/6),(2)^(2/3)* Gamma[Divide[1,3]]]*Divide[2,3]*((z)^(Divide[3,2]))^(2/3)* Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricPFQ[{Divide[5,6]}, {Divide[5,3]}, 2*Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [7 / 7]
Result: .466216443e-1+.323688811e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -.307544045e-1+.532681913e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.04662164404767005, 0.03236888089707873]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.030754404483927522, 0.05326819112268627]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.6.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryBi'@{z} = \frac{3^{1/6}}{\EulerGamma@{\tfrac{1}{3}}}e^{-\zeta}\genhyperF{1}{1}@{-\tfrac{1}{6}}{-\tfrac{1}{3}}{2\zeta}+\frac{3^{7/6}}{2^{7/3}\EulerGamma@{\tfrac{2}{3}}}\zeta^{4/3}e^{-\zeta}\genhyperF{1}{1}@{\tfrac{7}{6}}{\tfrac{7}{3}}{2\zeta}}
\AiryBi'@{z} = \frac{3^{1/6}}{\EulerGamma@{\tfrac{1}{3}}}e^{-\zeta}\genhyperF{1}{1}@{-\tfrac{1}{6}}{-\tfrac{1}{3}}{2\zeta}+\frac{3^{7/6}}{2^{7/3}\EulerGamma@{\tfrac{2}{3}}}\zeta^{4/3}e^{-\zeta}\genhyperF{1}{1}@{\tfrac{7}{6}}{\tfrac{7}{3}}{2\zeta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff( AiryBi(z), z$(1) ) = ((3)^(1/6))/(GAMMA((1)/(3)))*exp(-(2)/(3)*(z)^((3)/(2)))*hypergeom([-(1)/(6)], [-(1)/(3)], 2*(2)/(3)*(z)^((3)/(2)))+((3)^(7/6))/((2)^(7/3)* GAMMA((2)/(3)))*(2)/(3)*((z)^((3)/(2)))^(4/3)* exp(-(2)/(3)*(z)^((3)/(2)))*hypergeom([(7)/(6)], [(7)/(3)], 2*(2)/(3)*(z)^((3)/(2)))
D[AiryBi[z], {z, 1}] == Divide[(3)^(1/6),Gamma[Divide[1,3]]]*Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricPFQ[{-Divide[1,6]}, {-Divide[1,3]}, 2*Divide[2,3]*(z)^(Divide[3,2])]+Divide[(3)^(7/6),(2)^(7/3)* Gamma[Divide[2,3]]]*Divide[2,3]*((z)^(Divide[3,2]))^(4/3)* Exp[-Divide[2,3]*(z)^(Divide[3,2])]*HypergeometricPFQ[{Divide[7,6]}, {Divide[7,3]}, 2*Divide[2,3]*(z)^(Divide[3,2])]
Failure Failure
Failed [7 / 7]
Result: -.196479231e-1-.399625288e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .237615179e-1+.411561548e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[-0.01964792308482996, -0.03996252871199468]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.02376151710604532, 0.041156154892587504]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data