Verifying DLMF with Maple and Mathematica: Difference between revisions

From testwiki
Jump to navigation Jump to search
Line 14: Line 14:
== How to read the data? ==
== How to read the data? ==


By clicking on a chapter of the [https://dlmf.nist.gov/ DLMF] below you open a page containing a single large table that represents the evaluation results for the entire chapter.
You can access the data for a specific [https://dlmf.nist.gov/ DLMF] chapter by clicking on one of the links in the next section. This will open a large table presenting the information for each evaluated equation. Here, you see an example of such a table with just two entries from two different chapters. Most importantly, every entry in the table is linked to the actual equation in the DLMF. The most-left column provide a link directly to the particular equation in the DLMF. The results on this website do not provide an exact copy of the DLMF equation. Some equations only make sense when you consider the actual context. For checking the context, please take a look to the actual DLMF page by clicking on the equation label in the most-left column.


<div style="width: 100%; overflow: auto;">
<div style="width: 100%; overflow: auto;">
Line 38: Line 38:
</div>
</div>


The result tables do not contain every equation with a label in the [https://dlmf.nist.gov/ DLMF] since quite a few equations were skipped (see explanations in the paper).
The table above contains the following data.
 
; DLMF : Contains the equation label as a link to the actual equation in the DLMF.
; Formula : Contains the rendered equation of the DLMF and the actual semantic LaTeX source (sometimes also referred to as content-tex). More information about the semantic (or content) LaTeX can be found in REF-TODO
; Constraints : The constraints
; Maple : Translations to Maple
; Mathematica : Translations to Mathematica
; Symbolic (Maple / Mathematica) : Symbolic evaluation results
; Numeric (Maple / Mathematica) : Numeric evaluation results


== Links to the data ==
== Links to the data ==

Revision as of 11:57, 22 May 2021

This page presents the results of the publication: Comparative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems.

Bug Reports

You can find a PDF with commands that illustrate the encountered errors in Mathematica here: File:Mathematica Bugs Overview.pdf

We provide the same file in the Wolfram system notebook format (NB) here: File:Mathematica Bugs Notebook File.nb

DLMF Translations and Results

This section explains the data you can access. Below, you will find a large table that show the overall results of translations, symbolic and numeric verifications, as well as number of errors and aborted calculations for each DLMF chapter. Before you move on invastigating the results, please have a look on how to read the data first.

How to read the data?

You can access the data for a specific DLMF chapter by clicking on one of the links in the next section. This will open a large table presenting the information for each evaluated equation. Here, you see an example of such a table with just two entries from two different chapters. Most importantly, every entry in the table is linked to the actual equation in the DLMF. The most-left column provide a link directly to the particular equation in the DLMF. The results on this website do not provide an exact copy of the DLMF equation. Some equations only make sense when you consider the actual context. For checking the context, please take a look to the actual DLMF page by clicking on the equation label in the most-left column.

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi(x+1) = e^{\phi(x)}}
\phi(x+1) = e^{\phi(x)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -1 < x, x < \infty}
phi(x + 1) = exp(phi(x))
\[Phi][x + 1] == Exp[\[Phi][x]]
Skipped - no semantic math Skipped - no semantic math - -
11.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}}
\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0}
StruveH(nu, z) - BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)
StruveH[\[Nu], z] - BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None]
Successful Successful -
Failed [15 / 25]
Result: Complex[0.9495382353861556, -0.46093572348323536]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}

Result: Complex[0.7706973036767981, -0.20650772012904173]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}

... skip entries to safe data

The table above contains the following data.

DLMF
Contains the equation label as a link to the actual equation in the DLMF.
Formula
Contains the rendered equation of the DLMF and the actual semantic LaTeX source (sometimes also referred to as content-tex). More information about the semantic (or content) LaTeX can be found in REF-TODO
Constraints
The constraints
Maple
Translations to Maple
Mathematica
Translations to Mathematica
Symbolic (Maple / Mathematica)
Symbolic evaluation results
Numeric (Maple / Mathematica)
Numeric evaluation results

Links to the data

In the following, we present an overview of the translations of the DLMF equations to the CAS Maple and Mathematica.

DLMF Formula Translations
Maple
Translations
Mathematica
Symbolic Evaluation
Maple
Symbolic Evaluation
Mathematica
Numeric Evaluation
Maple
Numeric Evaluation
Mathematica
DLMF 6,545 4,114 (62.9%) 4,713 (72.0%) 1,084 (26.3%) 1,235 (26.2%) 698 (26.7%) 784 (22.6%)

The following links provide access to all results for each DLMF chapter. Since the pages are quite large, it may take some seconds until they are fully loaded.

  1. Algebraic and Analytic Methods
  2. Asymptotic Approximations
  3. Numerical Methods
  4. Elementary Functions I & Elementary Functions II
  5. Gamma Function
  6. Exponential, Logarithmic, Sine, and Cosine Integrals
  7. Error Functions, Dawson’s and Fresnel Integrals
  8. Incomplete Gamma and Related Functions
  9. Airy and Related Functions
  10. Bessel Functions I & Bessel Functions II & Bessel Functions III
  11. Struve and Related Functions
  12. Parabolic Cylinder Functions
  13. Confluent Hypergeometric Functions I & Confluent Hypergeometric Functions II
  14. Legendre and Related Functions I & Legendre and Related Functions II
  15. Hypergeometric Function I & Hypergeometric Function II
  16. Generalized Hypergeometric Functions and Meijer G-Function
  17. q-Hypergeometric and Related Functions
  18. Orthogonal Polynomials I & Orthogonal Polynomials II
  19. Elliptic Integrals I & Elliptic Integrals II
  20. Theta Functions
  21. Multidimensional Theta Functions
  22. Jacobian Elliptic Functions
  23. Weierstrass Elliptic and Modular Functions
  24. Bernoulli and Euler Polynomials
  25. Zeta and Related Functions
  26. Combinatorial Analysis
  27. Functions of Number Theory
  28. Mathieu Functions and Hill’s Equation
  29. Lamé Functions
  30. Spheroidal Wave Functions
  31. Heun Functions
  32. Painlevé Transcendents
  33. Coulomb Functions
  34. 3j,6j,9j Symbols
  35. Functions of Matrix Argument
  36. Integrals with Coalescing Saddles

Translations and Evaluations Overview Table

Meaning
2C Chapter Code
S Successful
% Percentage
F Fail
P/T Partially / Totally Failed
A Aborted
E Errors
Base The baseline performance of the translator
Maple The CAS Maple 2020
Mathematica The CAS Mathematica
Symbolic Numeric
Formulae Translations Maple Mathematica Maple Mathematica
2C Total Base Maple Math S % F S % F S % F [P/T] A E S % F [P/T] A E
1. AL 227 60 102 103 36 35.3% 60 34 33.0% 69 14 23.3% 35 [ 12 / 23] 7 4 14 20.3% 40 [ 9 / 31] 11 4
2. AS 136 33 65 65 6 9.2% 47 6 9.2% 59 7 14.9% 33 [ 5 / 28] 1 5 4 6.8% 38 [ 6 / 32] 7 9
3. NM 53 36 40 40 6 15.0% 31 5 12.5% 35 1 3.2% 27 [ 9 / 18] 0 2 0 0.0% 29 [ 8 / 21] 6 0
4. EF I & II 569 353 494 564 270 54.7% 221 304 53.9% 260 88 39.8% 126 [ 64 / 62] 0 6 110 42.3% 146 [ 55 / 91] 2 0
5. GA 144 38 130 139 41 31.5% 76 65 46.8% 74 39 51.3% 25 [ 12 / 13] 4 8 30 40.5% 20 [ 9 / 11] 13 9
6. EX 107 21 56 77 13 23.2% 43 18 23.4% 59 10 23.2% 31 [ 13 / 18] 0 2 23 39.0% 32 [ 6 / 26] 4 0
7. ER 149 35 101 120 52 51.5% 47 45 37.5% 75 21 44.7% 23 [ 10 / 13] 2 1 21 28.0% 43 [ 13 / 30] 9 1
8. IG 204 84 160 163 51 31.9% 102 65 39.9% 98 27 26.5% 61 [ 20 / 41] 9 5 22 22.4% 44 [ 19 / 25] 16 15
9. AI 235 36 180 179 54 30.0% 124 69 38.5% 110 34 27.4% 75 [ 41 / 34] 4 8 30 27.3% 58 [ 38 / 20] 14 7
10. BS I & II & III 653 143 392 486 80 20.4% 209 115 23.7% 371 86 41.1% 59 [ 41 / 18] 52 12 90 24.2% 151 [ 57 / 94] 92 18
11. ST 124 48 121 112 39 32.2% 73 36 32.1% 76 25 34.2% 40 [ 14 / 26] 3 5 21 27.6% 33 [ 8 / 25] 10 11
12. PC 106 33 79 90 25 31.6% 50 18 20.0% 72 15 30.0% 24 [ 15 / 9] 11 0 13 18.0% 43 [ 15 / 28] 12 3
13. CH I & II 260 126 252 254 75 29.8% 143 69 27.2% 185 14 9.8% 90 [ 55 / 35] 37 2 23 12.4% 95 [ 59 / 36] 45 21
14. LE I & II 238 166 230 229 30 13.0% 163 30 13.1% 199 40 24.5% 93 [ 57 / 36] 18 12 59 29.6% 92 [ 54 / 38] 41 5
15. HY I & II 206 148 198 197 46 23.2% 115 53 26.9% 144 17 14.8% 52 [ 34 / 18] 23 23 23 16.0% 77 [ 52 / 25] 29 6
16. GH 53 20 23 25 3 13.0% 16 2 8.0% 23 1 6.2% 9 [ 8 / 1] 6 0 1 4.3% 10 [ 7 / 3] 9 2
17. QH 175 1 53 124 23 43.4% 24 6 4.8% 118 0 0.0% 0 [ 0 / 0] 1 23 13 11.0% 57 [ 52 / 5] 39 5
18. OP I & II 468 132 235 288 65 27.6% 148 101 35.1% 185 67 45.3% 50 [ 32 / 18] 14 17 45 24.3% 68 [ 31 / 37] 52 12
19. EL I & II 516 103 252 416 39 15.5% 192 51 12.2% 365 18 9.4% 123 [ 44 / 79] 34 17 18 4.9% 264 [ 49 / 215] 61 15
20. TH 128 52 98 98 10 10.2% 68 1 1.0% 97 0 0.0% 32 [ 17 / 15] 20 16 33 34.0% 40 [ 25 / 15] 24 0
21. MT - - - - - - - - - - - - - - - - - - - - - -
22. JA 264 115 232 238 46 19.8% 176 30 12.6% 206 20 11.4% 116 [ 25 / 91] 36 4 22 10.7% 131 [ 39 / 92] 51 0
23. WE 164 7 19 34 1 5.3% 16 4 11.8% 30 0 0.0% 14 [ 2 / 12] 1 1 2 6.7% 23 [ 9 / 14] 2 3
24. BP 175 31 117 148 15 12.8% 101 23 15.5% 125 67 66.3% 32 [ 19 / 13] 1 1 78 62.4% 33 [ 22 / 11] 14 0
25. ZE 154 28 124 120 19 15.3% 90 48 40.0% 72 43 47.8% 29 [ 18 / 11] 10 8 22 30.5% 22 [ 6 / 16] 22 3
26. CM 136 31 78 87 20 25.6% 50 19 21.8% 68 30 60.0% 11 [ 8 / 3] 2 7 44 64.7% 18 [ 10 / 8] 5 1
27. NT 79 5 26 15 3 11.5% 17 6 40.0% 9 2 11.8% 6 [ 3 / 3] 0 8 3 33.3% 6 [ 3 / 3] 0 0
28. MA 267 52 97 110 7 7.2% 80 7 6.4% 103 6 7.5% 32 [ 12 / 20] 26 15 3 2.9% 48 [ 13 / 35] 33 17
29. LA 111 11 23 22 0 0.0% 21 0 0.0% 22 0 0.0% 19 [ 2 / 17] 0 2 0 0.0% 21 [ 1 / 20] 0 1
30. SW 71 14 19 26 0 0.0% 18 0 0.0% 26 0 0.0% 18 [ 5 / 13] 0 0 0 0.0% 19 [ 2 / 17] 5 1
31. HE 35 29 22 15 5 22.7% 13 2 13.3% 13 2 15.4% 10 [ 0 / 10] 0 1 0 0.0% 8 [ 0 / 8] 5 0
32. PT 67 43 57 57 3 5.3% 51 3 5.3% 54 1 2.0% 44 [ 7 / 37] 4 2 0 0.0% 41 [ 2 / 39] 8 5
33. CW 108 21 14 11 1 7.1% 13 0 0.0% 11 0 0.0% 5 [ 2 / 3] 0 8 0 0.0% 11 [ 2 / 9] 0 0
34. TJ 57 0 1 37 0 0.0% 1 0 0.0% 37 0 0.0% 1 [ 0 / 1] 0 0 14 37.8% 10 [ 5 / 5] 13 0
35. FM - - - - - - - - - - - - - - - - - - - - - -
36. IC 106 12 24 24 0 0.0% 19 0 0.0% 24 3 15.8% 12 [ 1 / 11] 3 1 3 12.5% 13 [ 1 / 12] 1 6
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum} 6545 2067 4114 4713 1084 26.3% 2618 1235 26.2% 3474 698 26.7% 1357 [607 / 750] 329 226 784 22.6% 1784 [687 / 1097] 655 180