Results of Gamma Function: Difference between revisions

From testwiki
Jump to navigation Jump to search
Tag: Replaced
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="width: 100%; height: 75vh; overflow: auto;">
<div style="-moz-column-count:2; column-count:2;">
{| class="wikitable sortable" style="margin: 0;"
; Notation : [[5.1|5.1 Special Notation]]<br>
|-
; Properties : [[5.2|5.2 Definitions]]<br>[[5.3|5.3 Graphics]]<br>[[5.4|5.4 Special Values and Extrema]]<br>[[5.5|5.5 Functional Relations]]<br>[[5.6|5.6 Inequalities]]<br>[[5.7|5.7 Series Expansions]]<br>[[5.8|5.8 Infinite Products]]<br>[[5.9|5.9 Integral Representations]]<br>[[5.10|5.10 Continued Fractions]]<br>[[5.11|5.11 Asymptotic Expansions]]<br>[[5.12|5.12 Beta Function]]<br>[[5.13|5.13 Integrals]]<br>[[5.14|5.14 Multidimensional Integrals]]<br>[[5.15|5.15 Polygamma Functions]]<br>[[5.16|5.16 Sums]]<br>[[5.17|5.17 Barnes’ <math>\BarnesG</math> -Function (Double Gamma Function)]]<br>[[5.18|5.18 <math>q</math> -Gamma and <math>q</math> -Beta Functions]]<br>
! scope="col" style="position: sticky; top: 0;" | DLMF
; Applications : [[5.19|5.19 Mathematical Applications]]<br>[[5.20|5.20 Physical Applications]]<br>
! scope="col" style="position: sticky; top: 0;" | Formula
; Computation : [[5.21|5.21 Methods of Computation]]<br>[[5.22|5.22 Tables]]<br>[[5.23|5.23 Approximations]]<br>[[5.24|5.24 Software]]<br>
! scope="col" style="position: sticky; top: 0;" | Constraints
! scope="col" style="position: sticky; top: 0;" | Maple
! scope="col" style="position: sticky; top: 0;" | Mathematica
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-
|-
| [https://dlmf.nist.gov/5.2.E1 5.2.E1] || [[Item:Q2026|<math>\EulerGamma@{z} = \int_{0}^{\infty}e^{-t}t^{z-1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{z} = \int_{0}^{\infty}e^{-t}t^{z-1}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(z) = int(exp(- t)*(t)^(z - 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[z] == Integrate[Exp[- t]*(t)^(z - 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 5]
|-
| [https://dlmf.nist.gov/5.2.E2 5.2.E2] || [[Item:Q2027|<math>\digamma@{z} = \EulerGamma'@{z}/\EulerGamma@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z} = \EulerGamma'@{z}/\EulerGamma@{z}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>Psi(z) = diff( GAMMA(z), z$(1) )/GAMMA(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z] == D[Gamma[z], {z, 1}]/Gamma[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.2#Ex1 5.2#Ex1] || [[Item:Q2029|<math>\Pochhammersym{a}{0} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Pochhammersym{a}{0} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>pochhammer(a, 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pochhammer[a, 0] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.2.E5 5.2.E5] || [[Item:Q2031|<math>\Pochhammersym{a}{n} = \EulerGamma@{a+n}/\EulerGamma@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Pochhammersym{a}{n} = \EulerGamma@{a+n}/\EulerGamma@{a}</syntaxhighlight> || <math>\realpart@@{(a+n)} > 0, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>pochhammer(a, n) = GAMMA(a + n)/GAMMA(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pochhammer[a, n] == Gamma[a + n]/Gamma[a]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.2.E6 5.2.E6] || [[Item:Q2032|<math>\Pochhammersym{-a}{n} = (-1)^{n}\Pochhammersym{a-n+1}{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Pochhammersym{-a}{n} = (-1)^{n}\Pochhammersym{a-n+1}{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>pochhammer(- a, n) = (- 1)^(n)* pochhammer(a - n + 1, n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pochhammer[- a, n] == (- 1)^(n)* Pochhammer[a - n + 1, n]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/5.2#Ex3 5.2#Ex3] || [[Item:Q2034|<math>\Pochhammersym{a}{2n} = 2^{2n}\Pochhammersym{\frac{a}{2}}{n}\Pochhammersym{\frac{a+1}{2}}{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Pochhammersym{a}{2n} = 2^{2n}\Pochhammersym{\frac{a}{2}}{n}\Pochhammersym{\frac{a+1}{2}}{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>pochhammer(a, 2*n) = (2)^(2*n)* pochhammer((a)/(2), n)*pochhammer((a + 1)/(2), n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pochhammer[a, 2*n] == (2)^(2*n)* Pochhammer[Divide[a,2], n]*Pochhammer[Divide[a + 1,2], n]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/5.2#Ex4 5.2#Ex4] || [[Item:Q2035|<math>\Pochhammersym{a}{2n+1} = 2^{2n+1}\Pochhammersym{\frac{a}{2}}{n+1}\Pochhammersym{\frac{a+1}{2}}{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Pochhammersym{a}{2n+1} = 2^{2n+1}\Pochhammersym{\frac{a}{2}}{n+1}\Pochhammersym{\frac{a+1}{2}}{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>pochhammer(a, 2*n + 1) = (2)^(2*n + 1)* pochhammer((a)/(2), n + 1)*pochhammer((a + 1)/(2), n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pochhammer[a, 2*n + 1] == (2)^(2*n + 1)* Pochhammer[Divide[a,2], n + 1]*Pochhammer[Divide[a + 1,2], n]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/5.4#Ex1 5.4#Ex1] || [[Item:Q2036|<math>\EulerGamma@{1} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{1} = 1</syntaxhighlight> || <math>\realpart@@{1} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(1) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[1] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4#Ex2 5.4#Ex2] || [[Item:Q2037|<math>n! = \EulerGamma@{n+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>n! = \EulerGamma@{n+1}</syntaxhighlight> || <math>\realpart@@{(n+1)} > 0</math> || <syntaxhighlight lang=mathematica>factorial(n) = GAMMA(n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(n)! == Gamma[n + 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.4.E3 5.4.E3] || [[Item:Q2039|<math>|\EulerGamma@{iy}| = \left(\frac{\pi}{y\sinh@{\pi y}}\right)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\EulerGamma@{iy}| = \left(\frac{\pi}{y\sinh@{\pi y}}\right)^{1/2}</syntaxhighlight> || <math>\realpart@@{(\iunit y)} > 0</math> || <syntaxhighlight lang=mathematica>abs(GAMMA(I*y)) = ((Pi)/(y*sinh(Pi*y)))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Gamma[I*y]] == (Divide[Pi,y*Sinh[Pi*y]])^(1/2)</syntaxhighlight> || Failure || Failure || Error || Skip - No test values generated
|-
| [https://dlmf.nist.gov/5.4.E4 5.4.E4] || [[Item:Q2040|<math>\EulerGamma@{\tfrac{1}{2}+\iunit y}\EulerGamma@{\tfrac{1}{2}-\iunit y} = \left|\EulerGamma@{\tfrac{1}{2}+\iunit y}\right|^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{\tfrac{1}{2}+\iunit y}\EulerGamma@{\tfrac{1}{2}-\iunit y} = \left|\EulerGamma@{\tfrac{1}{2}+\iunit y}\right|^{2}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+\iunit y)} > 0, \realpart@@{(\tfrac{1}{2}-\iunit y)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA((1)/(2)+ I*y)*GAMMA((1)/(2)- I*y) = (abs(GAMMA((1)/(2)+ I*y)))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[1,2]+ I*y]*Gamma[Divide[1,2]- I*y] == (Abs[Gamma[Divide[1,2]+ I*y]])^(2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.4.E4 5.4.E4] || [[Item:Q2040|<math>\left|\EulerGamma@{\tfrac{1}{2}+\iunit y}\right|^{2} = \frac{\pi}{\cosh@{\pi y}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left|\EulerGamma@{\tfrac{1}{2}+\iunit y}\right|^{2} = \frac{\pi}{\cosh@{\pi y}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}+\iunit y)} > 0, \realpart@@{(\tfrac{1}{2}-\iunit y)} > 0</math> || <syntaxhighlight lang=mathematica>(abs(GAMMA((1)/(2)+ I*y)))^(2) = (Pi)/(cosh(Pi*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Abs[Gamma[Divide[1,2]+ I*y]])^(2) == Divide[Pi,Cosh[Pi*y]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.4.E5 5.4.E5] || [[Item:Q2041|<math>\EulerGamma@{\tfrac{1}{4}+\iunit y}\EulerGamma@{\tfrac{3}{4}-\iunit y} = \frac{\pi\sqrt{2}}{\cosh@{\pi y}+\iunit\sinh@{\pi y}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{\tfrac{1}{4}+\iunit y}\EulerGamma@{\tfrac{3}{4}-\iunit y} = \frac{\pi\sqrt{2}}{\cosh@{\pi y}+\iunit\sinh@{\pi y}}</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{4}+\iunit y)} > 0, \realpart@@{(\tfrac{3}{4}-\iunit y)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA((1)/(4)+ I*y)*GAMMA((3)/(4)- I*y) = (Pi*sqrt(2))/(cosh(Pi*y)+ I*sinh(Pi*y))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[1,4]+ I*y]*Gamma[Divide[3,4]- I*y] == Divide[Pi*Sqrt[2],Cosh[Pi*y]+ I*Sinh[Pi*y]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.4.E6 5.4.E6] || [[Item:Q2042|<math>\EulerGamma@{\tfrac{1}{2}} = \pi^{1/2}\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{\tfrac{1}{2}} = \pi^{1/2}\\</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA((1)/(2)) = (Pi)^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[1,2]] == (Pi)^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4.E6 5.4.E6] || [[Item:Q2042|<math>\pi^{1/2}\\ = 1.77245\;38509\;05516\;02729\;\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi^{1/2}\\ = 1.77245\;38509\;05516\;02729\;\dots</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>(Pi)^(1/2) = 1.77245385090551602729</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Pi)^(1/2) == 1.77245385090551602729</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4.E7 5.4.E7] || [[Item:Q2043|<math>\EulerGamma@{\tfrac{1}{3}} = 2.67893\;85347\;07747\;63365\;\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{\tfrac{1}{3}} = 2.67893\;85347\;07747\;63365\;\dots</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{3})} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA((1)/(3)) = 2.67893853470774763365</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[1,3]] == 2.67893853470774763365</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4.E8 5.4.E8] || [[Item:Q2044|<math>\EulerGamma@{\tfrac{2}{3}} = 1.35411\;79394\;26400\;41694\;\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{\tfrac{2}{3}} = 1.35411\;79394\;26400\;41694\;\dots</syntaxhighlight> || <math>\realpart@@{(\tfrac{2}{3})} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA((2)/(3)) = 1.35411793942640041694</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[2,3]] == 1.35411793942640041694</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4.E9 5.4.E9] || [[Item:Q2045|<math>\EulerGamma@{\tfrac{1}{4}} = 3.62560\;99082\;21908\;31193\;\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{\tfrac{1}{4}} = 3.62560\;99082\;21908\;31193\;\dots</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{4})} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA((1)/(4)) = 3.62560990822190831193</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[1,4]] == 3.62560990822190831193</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4.E10 5.4.E10] || [[Item:Q2046|<math>\EulerGamma@{\tfrac{3}{4}} = 1.22541\;67024\;65177\;64512\;\dots</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{\tfrac{3}{4}} = 1.22541\;67024\;65177\;64512\;\dots</syntaxhighlight> || <math>\realpart@@{(\tfrac{3}{4})} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA((3)/(4)) = 1.22541670246517764512</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[3,4]] == 1.22541670246517764512</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4.E11 5.4.E11] || [[Item:Q2047|<math>\EulerGamma'@{1} = -\EulerConstant</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma'@{1} = -\EulerConstant</syntaxhighlight> || <math>\realpart@@{1} > 0</math> || <syntaxhighlight lang=mathematica>subs( temp=1, diff( GAMMA(temp), temp$(1) ) ) = - gamma</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[Gamma[temp], {temp, 1}]/.temp-> 1) == - EulerGamma</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4#Ex3 5.4#Ex3] || [[Item:Q2048|<math>\digamma@{1} = -\EulerConstant</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{1} = -\EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(1) = - gamma</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[1] == - EulerGamma</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4#Ex4 5.4#Ex4] || [[Item:Q2049|<math>\digamma'@{1} = \tfrac{1}{6}\pi^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma'@{1} = \tfrac{1}{6}\pi^{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>subs( temp=1, diff( Psi(temp), temp$(1) ) ) = (1)/(6)*(Pi)^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[PolyGamma[temp], {temp, 1}]/.temp-> 1) == Divide[1,6]*(Pi)^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4#Ex5 5.4#Ex5] || [[Item:Q2050|<math>\digamma@{\tfrac{1}{2}} = -\EulerConstant-2\ln@@{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{\tfrac{1}{2}} = -\EulerConstant-2\ln@@{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi((1)/(2)) = - gamma - 2*ln(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[Divide[1,2]] == - EulerGamma - 2*Log[2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4#Ex6 5.4#Ex6] || [[Item:Q2051|<math>\digamma'@{\tfrac{1}{2}} = \tfrac{1}{2}\pi^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma'@{\tfrac{1}{2}} = \tfrac{1}{2}\pi^{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>subs( temp=(1)/(2), diff( Psi(temp), temp$(1) ) ) = (1)/(2)*(Pi)^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[PolyGamma[temp], {temp, 1}]/.temp-> Divide[1,2]) == Divide[1,2]*(Pi)^(2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.4.E14 5.4.E14] || [[Item:Q2052|<math>\digamma@{n+1} = \sum_{k=1}^{n}\frac{1}{k}-\EulerConstant</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{n+1} = \sum_{k=1}^{n}\frac{1}{k}-\EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(n + 1) = sum((1)/(k), k = 1..n)- gamma</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[n + 1] == Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None]- EulerGamma</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.4.E16 5.4.E16] || [[Item:Q2054|<math>\imagpart@@{\digamma@{iy}} = \frac{1}{2y}+\frac{\pi}{2}\coth@{\pi y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\digamma@{iy}} = \frac{1}{2y}+\frac{\pi}{2}\coth@{\pi y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im(Psi(I*y)) = (1)/(2*y)+(Pi)/(2)*coth(Pi*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[PolyGamma[I*y]] == Divide[1,2*y]+Divide[Pi,2]*Coth[Pi*y]</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.4.E17 5.4.E17] || [[Item:Q2055|<math>\imagpart@@{\digamma@{\tfrac{1}{2}+iy}} = \frac{\pi}{2}\tanh@{\pi y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\digamma@{\tfrac{1}{2}+iy}} = \frac{\pi}{2}\tanh@{\pi y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im(Psi((1)/(2)+ I*y)) = (Pi)/(2)*tanh(Pi*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[PolyGamma[Divide[1,2]+ I*y]] == Divide[Pi,2]*Tanh[Pi*y]</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.4.E18 5.4.E18] || [[Item:Q2056|<math>\imagpart@@{\digamma@{1+iy}} = -\frac{1}{2y}+\frac{\pi}{2}\coth@{\pi y}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\digamma@{1+iy}} = -\frac{1}{2y}+\frac{\pi}{2}\coth@{\pi y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im(Psi(1 + I*y)) = -(1)/(2*y)+(Pi)/(2)*coth(Pi*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[PolyGamma[1 + I*y]] == -Divide[1,2*y]+Divide[Pi,2]*Coth[Pi*y]</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.4.E19 5.4.E19] || [[Item:Q2057|<math>\digamma@{\frac{p}{q}} = -\EulerConstant-\ln@@{q}-\frac{\pi}{2}\cot@{\frac{\pi p}{q}}+\frac{1}{2}\sum_{k=1}^{q-1}\cos@{\frac{2\pi kp}{q}}\ln@{2-2\cos@{\frac{2\pi k}{q}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{\frac{p}{q}} = -\EulerConstant-\ln@@{q}-\frac{\pi}{2}\cot@{\frac{\pi p}{q}}+\frac{1}{2}\sum_{k=1}^{q-1}\cos@{\frac{2\pi kp}{q}}\ln@{2-2\cos@{\frac{2\pi k}{q}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi((p)/(q)) = - gamma - ln(q)-(Pi)/(2)*cot((Pi*p)/(q))+(1)/(2)*sum(cos((2*Pi*k*p)/(q))*ln(2 - 2*cos((2*Pi*k)/(q))), k = 1..q - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[Divide[p,q]] == - EulerGamma - Log[q]-Divide[Pi,2]*Cot[Divide[Pi*p,q]]+Divide[1,2]*Sum[Cos[Divide[2*Pi*k*p,q]]*Log[2 - 2*Cos[Divide[2*Pi*k,q]]], {k, 1, q - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.5.E1 5.5.E1] || [[Item:Q2059|<math>\EulerGamma@{z+1} = z\EulerGamma@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{z+1} = z\EulerGamma@{z}</syntaxhighlight> || <math>\realpart@@{(z+1)} > 0, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(z + 1) = z*GAMMA(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[z + 1] == z*Gamma[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 5]
|-
| [https://dlmf.nist.gov/5.5.E2 5.5.E2] || [[Item:Q2060|<math>\digamma@{z+1} = \digamma@{z}+\frac{1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z+1} = \digamma@{z}+\frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z + 1) = Psi(z)+(1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z + 1] == PolyGamma[z]+Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/5.5.E3 5.5.E3] || [[Item:Q2061|<math>\EulerGamma@{z}\EulerGamma@{1-z} = \pi/\sin@{\pi z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{z}\EulerGamma@{1-z} = \pi/\sin@{\pi z}</syntaxhighlight> || <math>\realpart@@{z} > 0, \realpart@@{(1-z)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(z)*GAMMA(1 - z) = Pi/sin(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[z]*Gamma[1 - z] == Pi/Sin[Pi*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.5.E4 5.5.E4] || [[Item:Q2062|<math>\digamma@{z}-\digamma@{1-z} = -\pi/\tan@{\pi z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z}-\digamma@{1-z} = -\pi/\tan@{\pi z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z)- Psi(1 - z) = - Pi/tan(Pi*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z]- PolyGamma[1 - z] == - Pi/Tan[Pi*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.5.E5 5.5.E5] || [[Item:Q2063|<math>\EulerGamma@{2z} = \pi^{-1/2}2^{2z-1}\EulerGamma@{z}\EulerGamma@{z+\tfrac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{2z} = \pi^{-1/2}2^{2z-1}\EulerGamma@{z}\EulerGamma@{z+\tfrac{1}{2}}</syntaxhighlight> || <math>\realpart@@{(2z)} > 0, \realpart@@{z} > 0, \realpart@@{(z+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(2*z) = (Pi)^(- 1/2)* (2)^(2*z - 1)* GAMMA(z)*GAMMA(z +(1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[2*z] == (Pi)^(- 1/2)* (2)^(2*z - 1)* Gamma[z]*Gamma[z +Divide[1,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 5]
|-
| [https://dlmf.nist.gov/5.5.E6 5.5.E6] || [[Item:Q2064|<math>\EulerGamma@{nz} = (2\pi)^{(1-n)/2}n^{nz-(1/2)}\prod_{k=0}^{n-1}\EulerGamma@{z+\frac{k}{n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{nz} = (2\pi)^{(1-n)/2}n^{nz-(1/2)}\prod_{k=0}^{n-1}\EulerGamma@{z+\frac{k}{n}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(n*z) = (2*Pi)^((1 - n)/2)* (n)^(n*z -(1/2))* product(GAMMA(z +(k)/(n)), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[n*z] == (2*Pi)^((1 - n)/2)* (n)^(n*z -(1/2))* Product[Gamma[z +Divide[k,n]], {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 15] || Successful [Tested: 15]
|-
| [https://dlmf.nist.gov/5.5.E7 5.5.E7] || [[Item:Q2065|<math>\prod_{k=1}^{n-1}\EulerGamma@{\frac{k}{n}} = (2\pi)^{(n-1)/2}n^{-1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\prod_{k=1}^{n-1}\EulerGamma@{\frac{k}{n}} = (2\pi)^{(n-1)/2}n^{-1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>product(GAMMA((k)/(n)), k = 1..n - 1) = (2*Pi)^((n - 1)/2)* (n)^(- 1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Product[Gamma[Divide[k,n]], {k, 1, n - 1}, GenerateConditions->None] == (2*Pi)^((n - 1)/2)* (n)^(- 1/2)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[n, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.5.E8 5.5.E8] || [[Item:Q2066|<math>\digamma@{2z} = \tfrac{1}{2}\left(\digamma@{z}+\digamma@{z+\tfrac{1}{2}}\right)+\ln@@{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{2z} = \tfrac{1}{2}\left(\digamma@{z}+\digamma@{z+\tfrac{1}{2}}\right)+\ln@@{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(2*z) = (1)/(2)*(Psi(z)+ Psi(z +(1)/(2)))+ ln(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[2*z] == Divide[1,2]*(PolyGamma[z]+ PolyGamma[z +Divide[1,2]])+ Log[2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/5.5.E9 5.5.E9] || [[Item:Q2067|<math>\digamma@{nz} = \frac{1}{n}\sum_{k=0}^{n-1}\digamma@{z+\frac{k}{n}}+\ln@@{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{nz} = \frac{1}{n}\sum_{k=0}^{n-1}\digamma@{z+\frac{k}{n}}+\ln@@{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(n*z) = (1)/(n)*sum(Psi(z +(k)/(n)), k = 0..n - 1)+ ln(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[n*z] == Divide[1,n]*Sum[PolyGamma[z +Divide[k,n]], {k, 0, n - 1}, GenerateConditions->None]+ Log[n]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/5.6.E1 5.6.E1] || [[Item:Q2068|<math>1 < (2\pi)^{-1/2}x^{(1/2)-x}e^{x}\EulerGamma@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1 < (2\pi)^{-1/2}x^{(1/2)-x}e^{x}\EulerGamma@{x}</syntaxhighlight> || <math>\realpart@@{x} > 0</math> || <syntaxhighlight lang=mathematica>1 < (2*Pi)^(- 1/2)* (x)^((1/2)- x)* exp(x)*GAMMA(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 < (2*Pi)^(- 1/2)* (x)^((1/2)- x)* Exp[x]*Gamma[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.6.E1 5.6.E1] || [[Item:Q2068|<math>(2\pi)^{-1/2}x^{(1/2)-x}e^{x}\EulerGamma@{x} < e^{1/(12x)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(2\pi)^{-1/2}x^{(1/2)-x}e^{x}\EulerGamma@{x} < e^{1/(12x)}</syntaxhighlight> || <math>\realpart@@{x} > 0</math> || <syntaxhighlight lang=mathematica>(2*Pi)^(- 1/2)* (x)^((1/2)- x)* exp(x)*GAMMA(x) < exp(1/(12*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(2*Pi)^(- 1/2)* (x)^((1/2)- x)* Exp[x]*Gamma[x] < Exp[1/(12*x)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.6.E2 5.6.E2] || [[Item:Q2069|<math>\frac{1}{\EulerGamma@{x}}+\frac{1}{\EulerGamma@{1/x}} \leq 2</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{x}}+\frac{1}{\EulerGamma@{1/x}} \leq 2</syntaxhighlight> || <math>\realpart@@{x} > 0, \realpart@@{(1/x)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(x))+(1)/(GAMMA(1/x)) <= 2</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[x]]+Divide[1,Gamma[1/x]] <= 2</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.6.E3 5.6.E3] || [[Item:Q2070|<math>\frac{1}{(\EulerGamma@{x})^{2}}+\frac{1}{(\EulerGamma@{1/x})^{2}} \leq 2</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{(\EulerGamma@{x})^{2}}+\frac{1}{(\EulerGamma@{1/x})^{2}} \leq 2</syntaxhighlight> || <math>\realpart@@{x} > 0, \realpart@@{(1/x)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/((GAMMA(x))^(2))+(1)/((GAMMA(1/x))^(2)) <= 2</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,(Gamma[x])^(2)]+Divide[1,(Gamma[1/x])^(2)] <= 2</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.6.E4 5.6.E4] || [[Item:Q2071|<math>\frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} < (x+1)^{1-s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} < (x+1)^{1-s}</syntaxhighlight> || <math>0 < s, s < 1, \realpart@@{(x+1)} > 0, \realpart@@{(x+s)} > 0</math> || <syntaxhighlight lang=mathematica>(GAMMA(x + 1))/(GAMMA(x + s)) < (x + 1)^(1 - s)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Gamma[x + 1],Gamma[x + s]] < (x + 1)^(1 - s)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.6.E5 5.6.E5] || [[Item:Q2072|<math>\exp@{(1-s)\digamma@{x+s^{1/2}}} \leq \frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\exp@{(1-s)\digamma@{x+s^{1/2}}} \leq \frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}}</syntaxhighlight> || <math>0 < s, s < 1, \realpart@@{(x+1)} > 0, \realpart@@{(x+s)} > 0</math> || <syntaxhighlight lang=mathematica>exp((1 - s)*Psi(x + (s)^(1/2))) <= (GAMMA(x + 1))/(GAMMA(x + s))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[(1 - s)*PolyGamma[x + (s)^(1/2)]] <= Divide[Gamma[x + 1],Gamma[x + s]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.6.E5 5.6.E5] || [[Item:Q2072|<math>\frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} \leq \exp@{(1-s)\digamma@{x+\tfrac{1}{2}(s+1)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\EulerGamma@{x+1}}{\EulerGamma@{x+s}} \leq \exp@{(1-s)\digamma@{x+\tfrac{1}{2}(s+1)}}</syntaxhighlight> || <math>0 < s, s < 1, \realpart@@{(x+1)} > 0, \realpart@@{(x+s)} > 0</math> || <syntaxhighlight lang=mathematica>(GAMMA(x + 1))/(GAMMA(x + s)) <= exp((1 - s)*Psi(x +(1)/(2)*(s + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Gamma[x + 1],Gamma[x + s]] <= Exp[(1 - s)*PolyGamma[x +Divide[1,2]*(s + 1)]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.6.E6 5.6.E6] || [[Item:Q2073|<math>|\EulerGamma@{x+\iunit y}| \leq |\EulerGamma@{x}|</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\EulerGamma@{x+\iunit y}| \leq |\EulerGamma@{x}|</syntaxhighlight> || <math>\realpart@@{(x+\iunit y)} > 0, \realpart@@{x} > 0</math> || <syntaxhighlight lang=mathematica>abs(GAMMA(x + I*y)) <= abs(GAMMA(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Gamma[x + I*y]] <= Abs[Gamma[x]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/5.6.E7 5.6.E7] || [[Item:Q2074|<math>|\EulerGamma@{x+\iunit y}| \geq (\sech@{\pi y})^{1/2}\EulerGamma@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\EulerGamma@{x+\iunit y}| \geq (\sech@{\pi y})^{1/2}\EulerGamma@{x}</syntaxhighlight> || <math>x \geq \tfrac{1}{2}, \realpart@@{(x+\iunit y)} > 0, \realpart@@{x} > 0</math> || <syntaxhighlight lang=mathematica>abs(GAMMA(x + I*y)) >= (sech(Pi*y))^(1/2)* GAMMA(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Gamma[x + I*y]] >= (Sech[Pi*y])^(1/2)* Gamma[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/5.6.E8 5.6.E8] || [[Item:Q2075|<math>\left|\frac{\EulerGamma@{z+a}}{\EulerGamma@{z+b}}\right| \leq \frac{1}{|z|^{b-a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left|\frac{\EulerGamma@{z+a}}{\EulerGamma@{z+b}}\right| \leq \frac{1}{|z|^{b-a}}</syntaxhighlight> || <math>\realpart@@{(z+a)} > 0, \realpart@@{(z+b)} > 0</math> || <syntaxhighlight lang=mathematica>abs((GAMMA(z + a))/(GAMMA(z + b))) <= (1)/((abs(z))^(b - a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Divide[Gamma[z + a],Gamma[z + b]]] <= Divide[1,(Abs[z])^(b - a)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 83]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5333333334 <= .1250000000
Test Values: {a = -1.5, b = 1.5, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.000000000 <= .5000000000
Test Values: {a = -1.5, b = -.5, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.333333334 <= .2500000000
Test Values: {a = -1.5, b = .5, z = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2954089752 <= .8838834764e-1
Test Values: {a = -1.5, b = 2, z = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 95]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, 2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: False
Test Values: {Rule[a, -1.5], Rule[b, -0.5], Rule[z, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.6.E9 5.6.E9] || [[Item:Q2076|<math>|\EulerGamma@{z}| \leq (2\pi)^{1/2}|z|^{x-(1/2)}e^{-\pi|y|/2}\exp@{\tfrac{1}{6}|z|^{-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\EulerGamma@{z}| \leq (2\pi)^{1/2}|z|^{x-(1/2)}e^{-\pi|y|/2}\exp@{\tfrac{1}{6}|z|^{-1}}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>abs(GAMMA(x + y*I)) <= (2*Pi)^(1/2)*(abs(x + y*I))^(x -(1/2))* exp(- Pi*abs(y)/2)*exp((1)/(6)*(abs(x + y*I))^(- 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[Gamma[x + y*I]] <= (2*Pi)^(1/2)*(Abs[x + y*I])^(x -(1/2))* Exp[- Pi*Abs[y]/2]*Exp[Divide[1,6]*(Abs[x + y*I])^(- 1)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 18] || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/5.7.E1 5.7.E1] || [[Item:Q2077|<math>\frac{1}{\EulerGamma@{z}} = \sum_{k=1}^{\infty}c_{k}z^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{z}} = \sum_{k=1}^{\infty}c_{k}z^{k}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(z)) = sum(c[k]*(z)^(k), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[z]] == Sum[Subscript[c, k]*(z)^(k), {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [50 / 50]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.444337041-.9752791869*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, c[k] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.444337041+1.756771621*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, c[k] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.287713767-.9752791869*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, c[k] = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.287713767+1.756771621*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, c[k] = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [50 / 50]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0783116366515544, 0.3907462172966202], Times[-1.0, NSum[Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Plus[1, k]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[c, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.0783116366515544, 0.3907462172966202], Times[-1.0, NSum[Times[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[c, k], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.7.E3 5.7.E3] || [[Item:Q2079|<math>\ln@@{\EulerGamma@{1+z}} = -\ln@{1+z}+z(1-\EulerConstant)+\sum_{k=2}^{\infty}(-1)^{k}(\Riemannzeta@{k}-1)\frac{z^{k}}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@@{\EulerGamma@{1+z}} = -\ln@{1+z}+z(1-\EulerConstant)+\sum_{k=2}^{\infty}(-1)^{k}(\Riemannzeta@{k}-1)\frac{z^{k}}{k}</syntaxhighlight> || <math>|z| < 2, \realpart@@{(1+z)} > 0</math> || <syntaxhighlight lang=mathematica>ln(GAMMA(1 + z)) = - ln(1 + z)+ z*(1 - gamma)+ sum((- 1)^(k)*(Zeta(k)- 1)*((z)^(k))/(k), k = 2..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Gamma[1 + z]] == - Log[1 + z]+ z*(1 - EulerGamma)+ Sum[(- 1)^(k)*(Zeta[k]- 1)*Divide[(z)^(k),k], {k, 2, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.7.E4 5.7.E4] || [[Item:Q2080|<math>\digamma@{1+z} = -\EulerConstant+\sum_{k=2}^{\infty}(-1)^{k}\Riemannzeta@{k}z^{k-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{1+z} = -\EulerConstant+\sum_{k=2}^{\infty}(-1)^{k}\Riemannzeta@{k}z^{k-1}</syntaxhighlight> || <math>|z| < 1</math> || <syntaxhighlight lang=mathematica>Psi(1 + z) = - gamma + sum((- 1)^(k)* Zeta(k)*(z)^(k - 1), k = 2..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[1 + z] == - EulerGamma + Sum[(- 1)^(k)* Zeta[k]*(z)^(k - 1), {k, 2, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 1] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.7.E5 5.7.E5] || [[Item:Q2081|<math>\digamma@{1+z} = \frac{1}{2z}-\frac{\pi}{2}\cot@{\pi z}+\frac{1}{z^{2}-1}+1-\EulerConstant-\sum_{k=1}^{\infty}(\Riemannzeta@{2k+1}-1)z^{2k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{1+z} = \frac{1}{2z}-\frac{\pi}{2}\cot@{\pi z}+\frac{1}{z^{2}-1}+1-\EulerConstant-\sum_{k=1}^{\infty}(\Riemannzeta@{2k+1}-1)z^{2k}</syntaxhighlight> || <math>|z| < 2, z \neq 0</math> || <syntaxhighlight lang=mathematica>Psi(1 + z) = (1)/(2*z)-(Pi)/(2)*cot(Pi*z)+(1)/((z)^(2)- 1)+ 1 - gamma - sum((Zeta(2*k + 1)- 1)*(z)^(2*k), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[1 + z] == Divide[1,2*z]-Divide[Pi,2]*Cot[Pi*z]+Divide[1,(z)^(2)- 1]+ 1 - EulerGamma - Sum[(Zeta[2*k + 1]- 1)*(z)^(2*k), {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Error || Successful || - || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.7.E6 5.7.E6] || [[Item:Q2082|<math>\digamma@{z} = -\EulerConstant-\frac{1}{z}+\sum_{k=1}^{\infty}\frac{z}{k(k+z)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z} = -\EulerConstant-\frac{1}{z}+\sum_{k=1}^{\infty}\frac{z}{k(k+z)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z) = - gamma -(1)/(z)+ sum((z)/(k*(k + z)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z] == - EulerGamma -Divide[1,z]+ Sum[Divide[z,k*(k + z)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/5.7.E6 5.7.E6] || [[Item:Q2082|<math>-\EulerConstant-\frac{1}{z}+\sum_{k=1}^{\infty}\frac{z}{k(k+z)} = -\EulerConstant+\sum_{k=0}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\EulerConstant-\frac{1}{z}+\sum_{k=1}^{\infty}\frac{z}{k(k+z)} = -\EulerConstant+\sum_{k=0}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- gamma -(1)/(z)+ sum((z)/(k*(k + z)), k = 1..infinity) = - gamma + sum((1)/(k + 1)-(1)/(k + z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- EulerGamma -Divide[1,z]+ Sum[Divide[z,k*(k + z)], {k, 1, Infinity}, GenerateConditions->None] == - EulerGamma + Sum[Divide[1,k + 1]-Divide[1,k + z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/5.7.E7 5.7.E7] || [[Item:Q2083|<math>\digamma@{\frac{z+1}{2}}-\digamma@{\frac{z}{2}} = 2\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k+z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{\frac{z+1}{2}}-\digamma@{\frac{z}{2}} = 2\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k+z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi((z + 1)/(2))- Psi((z)/(2)) = 2*sum(((- 1)^(k))/(k + z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[Divide[z + 1,2]]- PolyGamma[Divide[z,2]] == 2*Sum[Divide[(- 1)^(k),k + z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/5.7.E8 5.7.E8] || [[Item:Q2084|<math>\imagpart@@{\digamma@{1+\iunit y}} = \sum_{k=1}^{\infty}\frac{y}{k^{2}+y^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\imagpart@@{\digamma@{1+\iunit y}} = \sum_{k=1}^{\infty}\frac{y}{k^{2}+y^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Im(Psi(1 + I*y)) = sum((y)/((k)^(2)+ (y)^(2)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Im[PolyGamma[1 + I*y]] == Sum[Divide[y,(k)^(2)+ (y)^(2)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.8.E2 5.8.E2] || [[Item:Q2086|<math>\frac{1}{\EulerGamma@{z}} = ze^{\EulerConstant z}\prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)e^{-z/k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{z}} = ze^{\EulerConstant z}\prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)e^{-z/k}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(z)) = z*exp(gamma*z)*product((1 +(z)/(k))*exp(- z/k), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[z]] == z*Exp[EulerGamma*z]*Product[(1 +Divide[z,k])*Exp[- z/k], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 5]
|-
| [https://dlmf.nist.gov/5.8.E3 5.8.E3] || [[Item:Q2087|<math>\left|\frac{\EulerGamma@{x}}{\EulerGamma@{x+\iunit y}}\right|^{2} = \prod_{k=0}^{\infty}\left(1+\frac{y^{2}}{(x+k)^{2}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left|\frac{\EulerGamma@{x}}{\EulerGamma@{x+\iunit y}}\right|^{2} = \prod_{k=0}^{\infty}\left(1+\frac{y^{2}}{(x+k)^{2}}\right)</syntaxhighlight> || <math>\realpart@@{x} > 0, \realpart@@{(x+\iunit y)} > 0</math> || <syntaxhighlight lang=mathematica>(abs((GAMMA(x))/(GAMMA(x + I*y))))^(2) = product(1 +((y)^(2))/((x + k)^(2)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Abs[Divide[Gamma[x],Gamma[x + I*y]]])^(2) == Product[1 +Divide[(y)^(2),(x + k)^(2)], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.243891895+0.*I
Test Values: {x = 1.5, y = -1.5, x = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.243891895+0.*I
Test Values: {x = 1.5, y = 1.5, x = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.210463144+0.*I
Test Values: {x = 1.5, y = -.5, x = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.210463144+0.*I
Test Values: {x = 1.5, y = .5, x = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 18]
|-
| [https://dlmf.nist.gov/5.9.E1 5.9.E1] || [[Item:Q2090|<math>\frac{1}{\mu}\EulerGamma@{\frac{\nu}{\mu}}\frac{1}{z^{\nu/\mu}} = \int_{0}^{\infty}\exp@{-zt^{\mu}}t^{\nu-1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\mu}\EulerGamma@{\frac{\nu}{\mu}}\frac{1}{z^{\nu/\mu}} = \int_{0}^{\infty}\exp@{-zt^{\mu}}t^{\nu-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(mu)*GAMMA((nu)/(mu))*(1)/((z)^(nu/mu)) = int(exp(- z*(t)^(mu))*(t)^(nu - 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,\[Mu]]*Gamma[Divide[\[Nu],\[Mu]]]*Divide[1,(z)^(\[Nu]/\[Mu])] == Integrate[Exp[- z*(t)^\[Mu]]*(t)^(\[Nu]- 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 300]
|-
| [https://dlmf.nist.gov/5.9.E2 5.9.E2] || [[Item:Q2091|<math>\frac{1}{\EulerGamma@{z}} = \frac{1}{2\pi i}\int_{-\infty}^{(0+)}e^{t}t^{-z}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\EulerGamma@{z}} = \frac{1}{2\pi i}\int_{-\infty}^{(0+)}e^{t}t^{-z}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(GAMMA(z)) = (1)/(2*Pi*I)*int(exp(t)*(t)^(- z), t = - infinity..(0 +))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Gamma[z]] == Divide[1,2*Pi*I]*Integrate[Exp[t]*(t)^(- z), {t, - Infinity, (0 +)}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/5.9.E3 5.9.E3] || [[Item:Q2092|<math>c^{-z}\EulerGamma@{z} = \int_{-\infty}^{\infty}|t|^{2z-1}e^{-ct^{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>c^{-z}\EulerGamma@{z} = \int_{-\infty}^{\infty}|t|^{2z-1}e^{-ct^{2}}\diff{t}</syntaxhighlight> || <math>c > 0, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>(c)^(- z)* GAMMA(z) = int((abs(t))^(2*z - 1)* exp(- c*(t)^(2)), t = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(c)^(- z)* Gamma[z] == Integrate[(Abs[t])^(2*z - 1)* Exp[- c*(t)^(2)], {t, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/5.9.E4 5.9.E4] || [[Item:Q2093|<math>\EulerGamma@{z} = \int_{1}^{\infty}t^{z-1}e^{-t}\diff{t}+\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(z+k)k!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{z} = \int_{1}^{\infty}t^{z-1}e^{-t}\diff{t}+\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(z+k)k!}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(z) = int((t)^(z - 1)* exp(- t), t = 1..infinity)+ sum(((- 1)^(k))/((z + k)*factorial(k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[z] == Integrate[(t)^(z - 1)* Exp[- t], {t, 1, Infinity}, GenerateConditions->None]+ Sum[Divide[(- 1)^(k),(z + k)*(k)!], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9999999999-0.*I
Test Values: {z = 2, z = 1}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E5 5.9.E5] || [[Item:Q2094|<math>\EulerGamma@{z} = \int_{0}^{\infty}t^{z-1}\left(e^{-t}-\sum_{k=0}^{n}\frac{(-1)^{k}t^{k}}{k!}\right)\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{z} = \int_{0}^{\infty}t^{z-1}\left(e^{-t}-\sum_{k=0}^{n}\frac{(-1)^{k}t^{k}}{k!}\right)\diff{t}</syntaxhighlight> || <math>-n-1 < \realpart@@{z}, \realpart@@{z} < -n, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(z) = int((t)^(z - 1)*(exp(- t)- sum(((- 1)^(k)* (t)^(k))/(factorial(k)), k = 0..n)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[z] == Integrate[(t)^(z - 1)*(Exp[- t]- Sum[Divide[(- 1)^(k)* (t)^(k),(k)!], {k, 0, n}, GenerateConditions->None]), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Error || Skip - No test values generated
|-
| [https://dlmf.nist.gov/5.9.E6 5.9.E6] || [[Item:Q2095|<math>\EulerGamma@{z}\cos@{\tfrac{1}{2}\pi z} = \int_{0}^{\infty}t^{z-1}\cos@@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{z}\cos@{\tfrac{1}{2}\pi z} = \int_{0}^{\infty}t^{z-1}\cos@@{t}\diff{t}</syntaxhighlight> || <math>0 < \realpart@@{z}, \realpart@@{z} < 1, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(z)*cos((1)/(2)*Pi*z) = int((t)^(z - 1)* cos(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[z]*Cos[Divide[1,2]*Pi*z] == Integrate[(t)^(z - 1)* Cos[t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.9.E7 5.9.E7] || [[Item:Q2096|<math>\EulerGamma@{z}\sin@{\tfrac{1}{2}\pi z} = \int_{0}^{\infty}t^{z-1}\sin@@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{z}\sin@{\tfrac{1}{2}\pi z} = \int_{0}^{\infty}t^{z-1}\sin@@{t}\diff{t}</syntaxhighlight> || <math>-1 < \realpart@@{z}, \realpart@@{z} < 1, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(z)*sin((1)/(2)*Pi*z) = int((t)^(z - 1)* sin(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[z]*Sin[Divide[1,2]*Pi*z] == Integrate[(t)^(z - 1)* Sin[t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.9.E8 5.9.E8] || [[Item:Q2097|<math>\EulerGamma@{1+\frac{1}{n}}\cos@{\frac{\pi}{2n}} = \int_{0}^{\infty}\cos@{t^{n}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{1+\frac{1}{n}}\cos@{\frac{\pi}{2n}} = \int_{0}^{\infty}\cos@{t^{n}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(1 +(1)/(n))*cos((Pi)/(2*n)) = int(cos((t)^(n)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[1 +Divide[1,n]]*Cos[Divide[Pi,2*n]] == Integrate[Cos[(t)^(n)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E9 5.9.E9] || [[Item:Q2098|<math>\EulerGamma@{1+\frac{1}{n}}\sin@{\frac{\pi}{2n}} = \int_{0}^{\infty}\sin@{t^{n}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{1+\frac{1}{n}}\sin@{\frac{\pi}{2n}} = \int_{0}^{\infty}\sin@{t^{n}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(1 +(1)/(n))*sin((Pi)/(2*n)) = int(sin((t)^(n)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[1 +Divide[1,n]]*Sin[Divide[Pi,2*n]] == Integrate[Sin[(t)^(n)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E10 5.9.E10] || [[Item:Q2099|<math>\Ln@@{\EulerGamma@{z}} = \left(z-\tfrac{1}{2}\right)\ln@@{z}-z+\tfrac{1}{2}\ln@{2\pi}+2\int_{0}^{\infty}\frac{\atan@{t/z}}{e^{2\pi t}-1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\EulerGamma@{z}} = \left(z-\tfrac{1}{2}\right)\ln@@{z}-z+\tfrac{1}{2}\ln@{2\pi}+2\int_{0}^{\infty}\frac{\atan@{t/z}}{e^{2\pi t}-1}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>ln(GAMMA(z)) = (z -(1)/(2))*ln(z)- z +(1)/(2)*ln(2*Pi)+ 2*int((arctan(t/z))/(exp(2*Pi*t)- 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Gamma[z]] == (z -Divide[1,2])*Log[z]- z +Divide[1,2]*Log[2*Pi]+ 2*Integrate[Divide[ArcTan[t/z],Exp[2*Pi*t]- 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 5] || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.9.E11 5.9.E11] || [[Item:Q2100|<math>\Ln@@{\EulerGamma@{z+1}} = -\EulerConstant z-\frac{1}{2\pi i}\int_{-c-\infty i}^{-c+\infty i}\frac{\pi z^{-s}}{s\sin@{\pi s}}\Riemannzeta@{-s}\diff{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\EulerGamma@{z+1}} = -\EulerConstant z-\frac{1}{2\pi i}\int_{-c-\infty i}^{-c+\infty i}\frac{\pi z^{-s}}{s\sin@{\pi s}}\Riemannzeta@{-s}\diff{s}</syntaxhighlight> || <math>\realpart@@{(z+1)} > 0</math> || <syntaxhighlight lang=mathematica>ln(GAMMA(z + 1)) = - gamma*z -(1)/(2*Pi*I)*int((Pi*(z)^(- s))/(s*sin(Pi*s))*Zeta(- s), s = - c - infinity*I..- c + infinity*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Gamma[z + 1]] == - EulerGamma*z -Divide[1,2*Pi*I]*Integrate[Divide[Pi*(z)^(- s),s*Sin[Pi*s]]*Zeta[- s], {s, - c - Infinity*I, - c + Infinity*I}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3627983593+.4645558136*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7321808519-.4375773776*I
Test Values: {c = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1549651868-.6096201737*I
Test Values: {c = -1.5, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.670593886e-1+1.175772123*I
Test Values: {c = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.9.E12 5.9.E12] || [[Item:Q2101|<math>\digamma@{z} = \int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-zt}}{1-e^{-t}}\right)\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z} = \int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-zt}}{1-e^{-t}}\right)\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z) = int((exp(- t))/(t)-(exp(- z*t))/(1 - exp(- t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z] == Integrate[Divide[Exp[- t],t]-Divide[Exp[- z*t],1 - Exp[- t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E13 5.9.E13] || [[Item:Q2102|<math>\digamma@{z} = \ln@@{z}+\int_{0}^{\infty}\left(\frac{1}{t}-\frac{1}{1-e^{-t}}\right)e^{-tz}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z} = \ln@@{z}+\int_{0}^{\infty}\left(\frac{1}{t}-\frac{1}{1-e^{-t}}\right)e^{-tz}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z) = ln(z)+ int(((1)/(t)-(1)/(1 - exp(- t)))*exp(- t*z), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z] == Log[z]+ Integrate[(Divide[1,t]-Divide[1,1 - Exp[- t]])*Exp[- t*z], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, 1]}</syntaxhighlight><br></div></div>
|-
| [https://dlmf.nist.gov/5.9.E14 5.9.E14] || [[Item:Q2103|<math>\digamma@{z} = \int_{0}^{\infty}\left(e^{-t}-\frac{1}{(1+t)^{z}}\right)\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z} = \int_{0}^{\infty}\left(e^{-t}-\frac{1}{(1+t)^{z}}\right)\frac{\diff{t}}{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z) = int((exp(- t)-(1)/((1 + t)^(z)))*(1)/(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z] == Integrate[(Exp[- t]-Divide[1,(1 + t)^(z)])*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/5.9.E15 5.9.E15] || [[Item:Q2104|<math>\digamma@{z} = \ln@@{z}-\frac{1}{2z}-2\int_{0}^{\infty}\frac{t\diff{t}}{(t^{2}+z^{2})(e^{2\pi t}-1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z} = \ln@@{z}-\frac{1}{2z}-2\int_{0}^{\infty}\frac{t\diff{t}}{(t^{2}+z^{2})(e^{2\pi t}-1)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z) = ln(z)-(1)/(2*z)- 2*int((t)/(((t)^(2)+ (z)^(2))*(exp(2*Pi*t)- 1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z] == Log[z]-Divide[1,2*z]- 2*Integrate[Divide[t,((t)^(2)+ (z)^(2))*(Exp[2*Pi*t]- 1)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4e-10-.2711020420e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2144560970-.1791125126*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E16 5.9.E16] || [[Item:Q2105|<math>\digamma@{z}+\EulerConstant = \int_{0}^{\infty}\frac{e^{-t}-e^{-zt}}{1-e^{-t}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z}+\EulerConstant = \int_{0}^{\infty}\frac{e^{-t}-e^{-zt}}{1-e^{-t}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z)+ gamma = int((exp(- t)- exp(- z*t))/(1 - exp(- t)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z]+ EulerGamma == Integrate[Divide[Exp[- t]- Exp[- z*t],1 - Exp[- t]], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E16 5.9.E16] || [[Item:Q2105|<math>\int_{0}^{\infty}\frac{e^{-t}-e^{-zt}}{1-e^{-t}}\diff{t} = \int_{0}^{1}\frac{1-t^{z-1}}{1-t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{e^{-t}-e^{-zt}}{1-e^{-t}}\diff{t} = \int_{0}^{1}\frac{1-t^{z-1}}{1-t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((exp(- t)- exp(- z*t))/(1 - exp(- t)), t = 0..infinity) = int((1 - (t)^(z - 1))/(1 - t), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[- t]- Exp[- z*t],1 - Exp[- t]], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[1 - (t)^(z - 1),1 - t], {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/5.9.E17 5.9.E17] || [[Item:Q2106|<math>\digamma@{z+1} = -\EulerConstant+\frac{1}{2\pi i}\int_{-c-\infty i}^{-c+\infty i}\frac{\pi z^{-s-1}}{\sin@{\pi s}}\Riemannzeta@{-s}\diff{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{z+1} = -\EulerConstant+\frac{1}{2\pi i}\int_{-c-\infty i}^{-c+\infty i}\frac{\pi z^{-s-1}}{\sin@{\pi s}}\Riemannzeta@{-s}\diff{s}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(z + 1) = - gamma +(1)/(2*Pi*I)*int((Pi*(z)^(- s - 1))/(sin(Pi*s))*Zeta(- s), s = - c - infinity*I..- c + infinity*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[z + 1] == - EulerGamma +Divide[1,2*Pi*I]*Integrate[Divide[Pi*(z)^(- s - 1),Sin[Pi*s]]*Zeta[- s], {s, - c - Infinity*I, - c + Infinity*I}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [42 / 42]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .9666504222+.3394950970*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3622891065+1.557241225*I
Test Values: {c = -1.5, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8622891063-.6912158211*I
Test Values: {c = -1.5, z = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1138310784-2.481210069*I
Test Values: {c = -1.5, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.9.E18 5.9.E18] || [[Item:Q2107|<math>\EulerConstant = -\int_{0}^{\infty}e^{-t}\ln@@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerConstant = -\int_{0}^{\infty}e^{-t}\ln@@{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>gamma = - int(exp(- t)*ln(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerGamma == - Integrate[Exp[- t]*Log[t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E18 5.9.E18] || [[Item:Q2107|<math>-\int_{0}^{\infty}e^{-t}\ln@@{t}\diff{t} = \int_{0}^{\infty}\left(\frac{1}{1+t}-e^{-t}\right)\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\int_{0}^{\infty}e^{-t}\ln@@{t}\diff{t} = \int_{0}^{\infty}\left(\frac{1}{1+t}-e^{-t}\right)\frac{\diff{t}}{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- int(exp(- t)*ln(t), t = 0..infinity) = int(((1)/(1 + t)- exp(- t))*(1)/(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Integrate[Exp[- t]*Log[t], {t, 0, Infinity}, GenerateConditions->None] == Integrate[(Divide[1,1 + t]- Exp[- t])*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E18 5.9.E18] || [[Item:Q2107|<math>\int_{0}^{\infty}\left(\frac{1}{1+t}-e^{-t}\right)\frac{\diff{t}}{t} = \int_{0}^{1}(1-e^{-t})\frac{\diff{t}}{t}-\int_{1}^{\infty}e^{-t}\frac{\diff{t}}{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\left(\frac{1}{1+t}-e^{-t}\right)\frac{\diff{t}}{t} = \int_{0}^{1}(1-e^{-t})\frac{\diff{t}}{t}-\int_{1}^{\infty}e^{-t}\frac{\diff{t}}{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(((1)/(1 + t)- exp(- t))*(1)/(t), t = 0..infinity) = int((1 - exp(- t))*(1)/(t), t = 0..1)- int(exp(- t)*(1)/(t), t = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Divide[1,1 + t]- Exp[- t])*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None] == Integrate[(1 - Exp[- t])*Divide[1,t], {t, 0, 1}, GenerateConditions->None]- Integrate[Exp[- t]*Divide[1,t], {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E18 5.9.E18] || [[Item:Q2107|<math>\int_{0}^{1}(1-e^{-t})\frac{\diff{t}}{t}-\int_{1}^{\infty}e^{-t}\frac{\diff{t}}{t} = \int_{0}^{\infty}\left(\frac{e^{-t}}{1-e^{-t}}-\frac{e^{-t}}{t}\right)\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}(1-e^{-t})\frac{\diff{t}}{t}-\int_{1}^{\infty}e^{-t}\frac{\diff{t}}{t} = \int_{0}^{\infty}\left(\frac{e^{-t}}{1-e^{-t}}-\frac{e^{-t}}{t}\right)\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1 - exp(- t))*(1)/(t), t = 0..1)- int(exp(- t)*(1)/(t), t = 1..infinity) = int((exp(- t))/(1 - exp(- t))-(exp(- t))/(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(1 - Exp[- t])*Divide[1,t], {t, 0, 1}, GenerateConditions->None]- Integrate[Exp[- t]*Divide[1,t], {t, 1, Infinity}, GenerateConditions->None] == Integrate[Divide[Exp[- t],1 - Exp[- t]]-Divide[Exp[- t],t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.9.E19 5.9.E19] || [[Item:Q2108|<math>\EulerGamma^{(n)}@{z} = \int_{0}^{\infty}(\ln@@{t})^{n}e^{-t}t^{z-1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma^{(n)}@{z} = \int_{0}^{\infty}(\ln@@{t})^{n}e^{-t}t^{z-1}\diff{t}</syntaxhighlight> || <math>n \geq 0, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>diff( GAMMA(z), z$(n) ) = int((ln(t))^(n)* exp(- t)*(t)^(z - 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Gamma[z], {z, n}] == Integrate[(Log[t])^(n)* Exp[- t]*(t)^(z - 1), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.10#Ex1 5.10#Ex1] || [[Item:Q2110|<math>a_{0} = \tfrac{1}{12}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{0} = \tfrac{1}{12}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[0] = (1)/(12)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, 0] == Divide[1,12]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.10#Ex2 5.10#Ex2] || [[Item:Q2111|<math>a_{1} = \tfrac{1}{30}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{1} = \tfrac{1}{30}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[1] = (1)/(30)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, 1] == Divide[1,30]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.10#Ex3 5.10#Ex3] || [[Item:Q2112|<math>a_{2} = \tfrac{53}{210}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{2} = \tfrac{53}{210}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[2] = (53)/(210)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, 2] == Divide[53,210]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.10#Ex4 5.10#Ex4] || [[Item:Q2113|<math>a_{3} = \tfrac{195}{371}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{3} = \tfrac{195}{371}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[3] = (195)/(371)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, 3] == Divide[195,371]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.10#Ex5 5.10#Ex5] || [[Item:Q2114|<math>a_{4} = \tfrac{22999}{22737}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{4} = \tfrac{22999}{22737}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[4] = (22999)/(22737)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, 4] == Divide[22999,22737]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.10#Ex6 5.10#Ex6] || [[Item:Q2115|<math>a_{5} = \tfrac{299\;44523}{197\;33142}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{5} = \tfrac{299\;44523}{197\;33142}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[5] = (29944523)/(19733142)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, 5] == Divide[29944523,19733142]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.10#Ex7 5.10#Ex7] || [[Item:Q2116|<math>a_{6} = \tfrac{10\;95352\;41009}{4\;82642\;75462}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{6} = \tfrac{10\;95352\;41009}{4\;82642\;75462}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[6] = (109535241009)/(48264275462)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, 6] == Divide[109535241009,48264275462]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex1 5.11#Ex1] || [[Item:Q2120|<math>g_{0} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>g_{0} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">g[0] = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[g, 0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex2 5.11#Ex2] || [[Item:Q2121|<math>g_{1} = \tfrac{1}{12}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>g_{1} = \tfrac{1}{12}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">g[1] = (1)/(12)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[g, 1] == Divide[1,12]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex3 5.11#Ex3] || [[Item:Q2122|<math>g_{2} = \tfrac{1}{288}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>g_{2} = \tfrac{1}{288}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">g[2] = (1)/(288)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[g, 2] == Divide[1,288]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex4 5.11#Ex4] || [[Item:Q2123|<math>g_{3} = -\tfrac{139}{51840}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>g_{3} = -\tfrac{139}{51840}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">g[3] = -(139)/(51840)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[g, 3] == -Divide[139,51840]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex5 5.11#Ex5] || [[Item:Q2124|<math>g_{4} = -\tfrac{571}{24\;88320}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>g_{4} = -\tfrac{571}{24\;88320}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">g[4] = -(571)/(2488320)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[g, 4] == -Divide[571,2488320]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex6 5.11#Ex6] || [[Item:Q2125|<math>g_{5} = \tfrac{1\;63879}{2090\;18880}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>g_{5} = \tfrac{1\;63879}{2090\;18880}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">g[5] = (163879)/(209018880)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[g, 5] == Divide[163879,209018880]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex7 5.11#Ex7] || [[Item:Q2126|<math>g_{6} = \tfrac{52\;46819}{7\;52467\;96800}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>g_{6} = \tfrac{52\;46819}{7\;52467\;96800}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">g[6] = (5246819)/(75246796800)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[g, 6] == Divide[5246819,75246796800]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/5.11.E5 5.11.E5] || [[Item:Q2127|<math>g_{k} = \sqrt{2}\Pochhammersym{\tfrac{1}{2}}{k}a_{2k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>g_{k} = \sqrt{2}\Pochhammersym{\tfrac{1}{2}}{k}a_{2k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>g[k] = sqrt(2)*pochhammer((1)/(2), k)*a[2*k]</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[g, k] == Sqrt[2]*Pochhammer[Divide[1,2], k]*Subscript[a, 2*k]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2536529683+.1464466095*I
Test Values: {a[2*k] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5253324962e-1-.303300858e-1*I
Test Values: {a[2*k] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.430371229-.8258252140*I
Test Values: {a[2*k] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2*3^(1/2)+1/2*I, k = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.112372436+.5124720135*I
Test Values: {a[2*k] = 1/2*3^(1/2)+1/2*I, g[k] = -1/2+1/2*I*3^(1/2), k = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.25365296808864424, 0.14644660940672627]
Test Values: {Rule[k, 1], Rule[Subscript[a, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.05253324975925311, -0.03033008588991054]
Test Values: {Rule[k, 2], Rule[Subscript[a, Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.11.E10 5.11.E10] || [[Item:Q2132|<math>\EulerGamma@{z} = e^{-z}z^{z}\left(\frac{2\pi}{z}\right)^{1/2}\left(\sum_{k=0}^{K-1}\frac{g_{k}}{z^{k}}+R_{K}(z)\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerGamma@{z} = e^{-z}z^{z}\left(\frac{2\pi}{z}\right)^{1/2}\left(\sum_{k=0}^{K-1}\frac{g_{k}}{z^{k}}+R_{K}(z)\right)</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(z) = exp(- z)*(z)^(z)*((2*Pi)/(z))^(1/2)*(sum((g[k])/((z)^(k)), k = 0..K - 1)+ R[K](z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[z] == Exp[- z]*(z)^(z)*(Divide[2*Pi,z])^(1/2)*(Sum[Divide[Subscript[g, k],(z)^(k)], {k, 0, K - 1}, GenerateConditions->None]+ Subscript[R, K][z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.892613380-.1706947928*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, R[K] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2*3^(1/2)+1/2*I, K = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.4529896033-2.955992714*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, R[K] = 1/2*3^(1/2)+1/2*I, g[k] = -1/2+1/2*I*3^(1/2), K = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8926845412+1.268928985*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, R[K] = 1/2*3^(1/2)+1/2*I, g[k] = 1/2-1/2*I*3^(1/2), K = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.332308320-1.516368937*I
Test Values: {K = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, R[K] = 1/2*3^(1/2)+1/2*I, g[k] = -1/2*3^(1/2)-1/2*I, K = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.8926133813331316, -0.17069479199840365]
Test Values: {Rule[K, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[R, K], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.7462398809799414, -0.22409723911500246]
Test Values: {Rule[K, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[g, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[R, K], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex8 5.11#Ex8] || [[Item:Q2137|<math>G_{0}(a,b) = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>G_{0}(a,b) = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">G[0](a , b) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[G, 0][a , b] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex9 5.11#Ex9] || [[Item:Q2138|<math>G_{1}(a,b) = \tfrac{1}{2}(a-b)(a+b-1)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>G_{1}(a,b) = \tfrac{1}{2}(a-b)(a+b-1)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">G[1](a , b) = (1)/(2)*(a - b)*(a + b - 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[G, 1][a , b] == Divide[1,2]*(a - b)*(a + b - 1)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/5.11#Ex10 5.11#Ex10] || [[Item:Q2139|<math>G_{2}(a,b) = \frac{1}{12}\binom{a-b}{2}(3(a+b-1)^{2}-(a-b+1))</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>G_{2}(a,b) = \frac{1}{12}\binom{a-b}{2}(3(a+b-1)^{2}-(a-b+1))</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>G[2](a , b) = (1)/(12)*binomial(a - b,2)*(3*(a + b - 1)^(2)-(a - b + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[G, 2][a , b] == Divide[1,12]*Binomial[a - b,2]*(3*(a + b - 1)^(2)-(a - b + 1))</syntaxhighlight> || Failure || Failure || Error || Error
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.11#Ex11 5.11#Ex11] || [[Item:Q2140|<math>H_{0}(a,b) = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>H_{0}(a,b) = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">H[0](a , b) = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[H, 0][a , b] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/5.11#Ex12 5.11#Ex12] || [[Item:Q2141|<math>H_{1}(a,b) = -\frac{1}{12}\binom{a-b}{2}(a-b+1)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>H_{1}(a,b) = -\frac{1}{12}\binom{a-b}{2}(a-b+1)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>H[1](a , b) = -(1)/(12)*binomial(a - b,2)*(a - b + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[H, 1][a , b] == -Divide[1,12]*Binomial[a - b,2]*(a - b + 1)</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/5.11#Ex13 5.11#Ex13] || [[Item:Q2142|<math>H_{2}(a,b) = \frac{1}{240}\binom{a-b}{4}(2(a-b+1)+5(a-b+1)^{2})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>H_{2}(a,b) = \frac{1}{240}\binom{a-b}{4}(2(a-b+1)+5(a-b+1)^{2})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>H[2](a , b) = (1)/(240)*binomial(a - b,4)*(2*(a - b + 1)+ 5*(a - b + 1)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[H, 2][a , b] == Divide[1,240]*Binomial[a - b,4]*(2*(a - b + 1)+ 5*(a - b + 1)^(2))</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/5.12.E1 5.12.E1] || [[Item:Q2146|<math>\EulerBeta@{a}{b} = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerBeta@{a}{b} = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Beta(a, b) = int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Beta[a, b] == Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [11 / 36]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[b, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.12.E1 5.12.E1] || [[Item:Q2146|<math>\int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1) = (GAMMA(a)*GAMMA(b))/(GAMMA(a + b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None] == Divide[Gamma[a]*Gamma[b],Gamma[a + b]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/5.12.E2 5.12.E2] || [[Item:Q2147|<math>\int_{0}^{\pi/2}\sin^{2a-1}@@{\theta}\cos^{2b-1}@@{\theta}\diff{\theta} = \tfrac{1}{2}\EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi/2}\sin^{2a-1}@@{\theta}\cos^{2b-1}@@{\theta}\diff{\theta} = \tfrac{1}{2}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((sin(theta))^(2*a - 1)* (cos(theta))^(2*b - 1), theta = 0..Pi/2) = (1)/(2)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[\[Theta]])^(2*a - 1)* (Cos[\[Theta]])^(2*b - 1), {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[1,2]*Beta[a, b]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/5.12.E3 5.12.E3] || [[Item:Q2148|<math>\int_{0}^{\infty}\frac{t^{a-1}\diff{t}}{(1+t)^{a+b}} = \EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{a-1}\diff{t}}{(1+t)^{a+b}} = \EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(a - 1))/((1 + t)^(a + b)), t = 0..infinity) = Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(a - 1),(1 + t)^(a + b)], {t, 0, Infinity}, GenerateConditions->None] == Beta[a, b]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 9]
|-
| [https://dlmf.nist.gov/5.12.E4 5.12.E4] || [[Item:Q2149|<math>\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\diff{t} = \EulerBeta@{a}{b}(1+z)^{-a}z^{-b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\diff{t} = \EulerBeta@{a}{b}(1+z)^{-a}z^{-b}</syntaxhighlight> || <math>|\phase@@{z}| < \pi, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(a - 1)*(1 - t)^(b - 1))/((t + z)^(a + b)), t = 0..1) = Beta(a, b)*(1 + z)^(- a)* (z)^(- b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(a - 1)*(1 - t)^(b - 1),(t + z)^(a + b)], {t, 0, 1}, GenerateConditions->None] == Beta[a, b]*(1 + z)^(- a)* (z)^(- b)</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [77 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.12.E5 5.12.E5] || [[Item:Q2150|<math>\int_{0}^{\pi/2}(\cos@@{t})^{a-1}\cos@{bt}\diff{t} = \frac{\pi}{2^{a}}\frac{1}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi/2}(\cos@@{t})^{a-1}\cos@{bt}\diff{t} = \frac{\pi}{2^{a}}\frac{1}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(\frac{1}{2}(a+b+1))} > 0, \realpart@@{(\frac{1}{2}(a-b+1))} > 0, \realpart@@{((\frac{1}{2}(a+b+1))+b)} > 0, \realpart@@{(a+(\frac{1}{2}(a-b+1)))} > 0</math> || <syntaxhighlight lang=mathematica>int((cos(t))^(a - 1)* cos(b*t), t = 0..Pi/2) = (Pi)/((2)^(a))*(1)/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Cos[t])^(a - 1)* Cos[b*t], {t, 0, Pi/2}, GenerateConditions->None] == Divide[Pi,(2)^(a)]*Divide[1,a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 18] || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.12.E6 5.12.E6] || [[Item:Q2151|<math>\int_{0}^{\pi}(\sin@@{t})^{a-1}e^{ibt}\diff{t} = \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}(\sin@@{t})^{a-1}e^{ibt}\diff{t} = \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(\frac{1}{2}(a+b+1))} > 0, \realpart@@{(\frac{1}{2}(a-b+1))} > 0, \realpart@@{((\frac{1}{2}(a+b+1))+b)} > 0, \realpart@@{(a+(\frac{1}{2}(a-b+1)))} > 0</math> || <syntaxhighlight lang=mathematica>int((sin(t))^(a - 1)* exp(I*b*t), t = 0..Pi) = (Pi)/((2)^(a - 1))*(exp(I*Pi*b/2))/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[t])^(a - 1)* Exp[I*b*t], {t, 0, Pi}, GenerateConditions->None] == Divide[Pi,(2)^(a - 1)]*Divide[Exp[I*Pi*b/2],a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 18] || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.12.E7 5.12.E7] || [[Item:Q2152|<math>\int_{0}^{\infty}\frac{\cosh@{2bt}}{(\cosh@@{t})^{2a}}\diff{t} = 4^{a-1}\EulerBeta@{a+b}{a-b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\cosh@{2bt}}{(\cosh@@{t})^{2a}}\diff{t} = 4^{a-1}\EulerBeta@{a+b}{a-b}</syntaxhighlight> || <math>\realpart@@{a} > |\realpart@@{b}|, \realpart@@{(a+b)} > 0, \realpart@@{(a-b)} > 0, \realpart@@{((a+b)+b)} > 0, \realpart@@{(a+(a-b))} > 0</math> || <syntaxhighlight lang=mathematica>int((cosh(2*b*t))/((cosh(t))^(2*a)), t = 0..infinity) = (4)^(a - 1)* Beta(a + b, a - b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Cosh[2*b*t],(Cosh[t])^(2*a)], {t, 0, Infinity}, GenerateConditions->None] == (4)^(a - 1)* Beta[a + b, a - b]</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
|-
| [https://dlmf.nist.gov/5.12.E8 5.12.E8] || [[Item:Q2153|<math>\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\diff{t}}{(w+it)^{a}(z-it)^{b}} = \frac{(w+z)^{1-a-b}}{(a+b-1)\EulerBeta@{a}{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\diff{t}}{(w+it)^{a}(z-it)^{b}} = \frac{(w+z)^{1-a-b}}{(a+b-1)\EulerBeta@{a}{b}}</syntaxhighlight> || <math>\realpart@{a+b} > 1, \realpart@@{w} > 0, \realpart@@{z} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((1)/((w + I*t)^(a)*(z - I*t)^(b)), t = - infinity..infinity) = ((w + z)^(1 - a - b))/((a + b - 1)*Beta(a, b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[1,(w + I*t)^(a)*(z - I*t)^(b)], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(w + z)^(1 - a - b),(a + b - 1)*Beta[a, b]]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Failure || - || Successful [Tested: 250]
|-
| [https://dlmf.nist.gov/5.12.E9 5.12.E9] || [[Item:Q2154|<math>\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\diff{t} = \frac{1}{b\EulerBeta@{a}{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\diff{t} = \frac{1}{b\EulerBeta@{a}{b}}</syntaxhighlight> || <math>0 < c, c < 1, \realpart@{a+b} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi*I)*int((t)^(- a)*(1 - t)^(- 1 - b), t = c - infinity*I..c + infinity*I) = (1)/(b*Beta(a, b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi*I]*Integrate[(t)^(- a)*(1 - t)^(- 1 - b), {t, c - Infinity*I, c + Infinity*I}, GenerateConditions->None] == Divide[1,b*Beta[a, b]]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.12.E10 5.12.E10] || [[Item:Q2155|<math>\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\diff{t} = \frac{\sin@{\pi b}}{\pi}\EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\diff{t} = \frac{\sin@{\pi b}}{\pi}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi*I)*int((t)^(a - 1)*(t - 1)^(b - 1), t = 0..(1 +)) = (sin(Pi*b))/(Pi)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi*I]*Integrate[(t)^(a - 1)*(t - 1)^(b - 1), {t, 0, (1 +)}, GenerateConditions->None] == Divide[Sin[Pi*b],Pi]*Beta[a, b]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Failure || - || Error
|-
| [https://dlmf.nist.gov/5.12.E11 5.12.E11] || [[Item:Q2156|<math>\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\diff{t} = \EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\diff{t} = \EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(exp(2*Pi*I*a)- 1)*int((t)^(a - 1)*(1 + t)^(- a - b), t = infinity..(0 +)) = Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Exp[2*Pi*I*a]- 1]*Integrate[(t)^(a - 1)*(1 + t)^(- a - b), {t, Infinity, (0 +)}, GenerateConditions->None] == Beta[a, b]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/5.12.E12 5.12.E12] || [[Item:Q2157|<math>\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\diff{t} = -4e^{\pi i(a+b)}\sin@{\pi a}\sin@{\pi b}\EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\diff{t} = -4e^{\pi i(a+b)}\sin@{\pi a}\sin@{\pi b}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)*(1 - t)^(b - 1), t = P..(1 + , 0 + , 1 - , 0 -)) = - 4*exp(Pi*I*(a + b))*sin(Pi*a)*sin(Pi*b)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, P, (1 + , 0 + , 1 - , 0 -)}, GenerateConditions->None] == - 4*Exp[Pi*I*(a + b)]*Sin[Pi*a]*Sin[Pi*b]*Beta[a, b]</syntaxhighlight> || Error || Failure || - || Error
|-
| [https://dlmf.nist.gov/5.13.E1 5.13.E1] || [[Item:Q2158|<math>\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{s+a}\EulerGamma@{b-s}z^{-s}\diff{s} = \frac{\EulerGamma@{a+b}z^{a}}{(1+z)^{a+b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{s+a}\EulerGamma@{b-s}z^{-s}\diff{s} = \frac{\EulerGamma@{a+b}z^{a}}{(1+z)^{a+b}}</syntaxhighlight> || <math>\realpart@{a+b} > 0, -\realpart@@{a} < c, c < \realpart@@{b}, |\phase@@{z}| < \pi, \realpart@@{(s+a)} > 0, \realpart@@{(b-s)} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi*I)*int(GAMMA(s + a)*GAMMA(b - s)*(z)^(- s), s = c - I*infinity..c + I*infinity) = (GAMMA(a + b)*(z)^(a))/((1 + z)^(a + b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi*I]*Integrate[Gamma[s + a]*Gamma[b - s]*(z)^(- s), {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] == Divide[Gamma[a + b]*(z)^(a),(1 + z)^(a + b)]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.13.E2 5.13.E2] || [[Item:Q2159|<math>\frac{1}{2\pi}\int_{-\infty}^{\infty}|\EulerGamma@{a+it}|^{2}e^{(2b-\pi)t}\diff{t} = \frac{\EulerGamma@{2a}}{(2\sin@@{b})^{2a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int_{-\infty}^{\infty}|\EulerGamma@{a+it}|^{2}e^{(2b-\pi)t}\diff{t} = \frac{\EulerGamma@{2a}}{(2\sin@@{b})^{2a}}</syntaxhighlight> || <math>a > 0, 0 < b, b < \pi, \realpart@@{(a+\iunit t)} > 0, \realpart@@{(2a)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((abs(GAMMA(a + I*t)))^(2)* exp((2*b - Pi)*t), t = - infinity..infinity) = (GAMMA(2*a))/((2*sin(b))^(2*a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[(Abs[Gamma[a + I*t]])^(2)* Exp[(2*b - Pi)*t], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[Gamma[2*a],(2*Sin[b])^(2*a)]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.13.E3 5.13.E3] || [[Item:Q2160|<math>\frac{1}{2\pi}\int_{-\infty}^{\infty}\EulerGamma@{a+it}\EulerGamma@{b+it}\EulerGamma@{c-it}\EulerGamma@{d-it}\diff{t} = \frac{\EulerGamma@{a+c}\EulerGamma@{a+d}\EulerGamma@{b+c}\EulerGamma@{b+d}}{\EulerGamma@{a+b+c+d}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int_{-\infty}^{\infty}\EulerGamma@{a+it}\EulerGamma@{b+it}\EulerGamma@{c-it}\EulerGamma@{d-it}\diff{t} = \frac{\EulerGamma@{a+c}\EulerGamma@{a+d}\EulerGamma@{b+c}\EulerGamma@{b+d}}{\EulerGamma@{a+b+c+d}}</syntaxhighlight> || <math>\realpart@@{(a+\iunit t)} > 0, \realpart@@{(b+\iunit t)} > 0, \realpart@@{(c-\iunit t)} > 0, \realpart@@{(d-\iunit t)} > 0, \realpart@@{(a+c)} > 0, \realpart@@{(a+d)} > 0, \realpart@@{(b+c)} > 0, \realpart@@{(b+d)} > 0, \realpart@@{(a+b+c+d)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int(GAMMA(a + I*t)*GAMMA(b + I*t)*GAMMA(c - I*t)*GAMMA(d - I*t), t = - infinity..infinity) = (GAMMA(a + c)*GAMMA(a + d)*GAMMA(b + c)*GAMMA(b + d))/(GAMMA(a + b + c + d))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Gamma[a + I*t]*Gamma[b + I*t]*Gamma[c - I*t]*Gamma[d - I*t], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[Gamma[a + c]*Gamma[a + d]*Gamma[b + c]*Gamma[b + d],Gamma[a + b + c + d]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.13.E4 5.13.E4] || [[Item:Q2161|<math>\int_{-\infty}^{\infty}\frac{\diff{t}}{\EulerGamma@{a+t}\EulerGamma@{b+t}\EulerGamma@{c-t}\EulerGamma@{d-t}} = \frac{\EulerGamma@{a+b+c+d-3}}{\EulerGamma@{a+c-1}\EulerGamma@{a+d-1}\EulerGamma@{b+c-1}\EulerGamma@{b+d-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}\frac{\diff{t}}{\EulerGamma@{a+t}\EulerGamma@{b+t}\EulerGamma@{c-t}\EulerGamma@{d-t}} = \frac{\EulerGamma@{a+b+c+d-3}}{\EulerGamma@{a+c-1}\EulerGamma@{a+d-1}\EulerGamma@{b+c-1}\EulerGamma@{b+d-1}}</syntaxhighlight> || <math>\realpart@{a+b+c+d} > 3, \realpart@@{(a+t)} > 0, \realpart@@{(b+t)} > 0, \realpart@@{(c-t)} > 0, \realpart@@{(d-t)} > 0, \realpart@@{(a+b+c+d-3)} > 0, \realpart@@{(a+c-1)} > 0, \realpart@@{(a+d-1)} > 0, \realpart@@{(b+c-1)} > 0, \realpart@@{(b+d-1)} > 0</math> || <syntaxhighlight lang=mathematica>int((1)/(GAMMA(a + t)*GAMMA(b + t)*GAMMA(c - t)*GAMMA(d - t)), t = - infinity..infinity) = (GAMMA(a + b + c + d - 3))/(GAMMA(a + c - 1)*GAMMA(a + d - 1)*GAMMA(b + c - 1)*GAMMA(b + d - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Gamma[a + t]*Gamma[b + t]*Gamma[c - t]*Gamma[d - t]], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[Gamma[a + b + c + d - 3],Gamma[a + c - 1]*Gamma[a + d - 1]*Gamma[b + c - 1]*Gamma[b + d - 1]]</syntaxhighlight> || Failure || Aborted || Manual Skip! || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.13.E5 5.13.E5] || [[Item:Q2162|<math>\frac{1}{4\pi}\int_{-\infty}^{\infty}\frac{\prod_{k=1}^{4}\EulerGamma@{a_{k}+it}\EulerGamma@{a_{k}-it}}{\EulerGamma@{2it}\EulerGamma@{-2it}}\diff{t} = \frac{\prod_{1\leq j<k\leq 4}\EulerGamma@{a_{j}+a_{k}}}{\EulerGamma@{a_{1}+a_{2}+a_{3}+a_{4}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{4\pi}\int_{-\infty}^{\infty}\frac{\prod_{k=1}^{4}\EulerGamma@{a_{k}+it}\EulerGamma@{a_{k}-it}}{\EulerGamma@{2it}\EulerGamma@{-2it}}\diff{t} = \frac{\prod_{1\leq j<k\leq 4}\EulerGamma@{a_{j}+a_{k}}}{\EulerGamma@{a_{1}+a_{2}+a_{3}+a_{4}}}</syntaxhighlight> || <math>\realpart@{a_{k}} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(4*Pi)*int((product(GAMMA(a[k]+ I*t)*GAMMA(a[k]- I*t), k = 1..4))/(GAMMA(2*I*t)*GAMMA(- 2*I*t)), t = - infinity..infinity) = (product(product(GAMMA(a[j]+ a[k]), k = j + 1..4), j = 1..k - 1))/(GAMMA(a[1]+ a[2]+ a[3]+ a[4]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,4*Pi]*Integrate[Divide[Product[Gamma[Subscript[a, k]+ I*t]*Gamma[Subscript[a, k]- I*t], {k, 1, 4}, GenerateConditions->None],Gamma[2*I*t]*Gamma[- 2*I*t]], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[Product[Product[Gamma[Subscript[a, j]+ Subscript[a, k]], {k, j + 1, 4}, GenerateConditions->None], {j, 1, k - 1}, GenerateConditions->None],Gamma[Subscript[a, 1]+ Subscript[a, 2]+ Subscript[a, 3]+ Subscript[a, 4]]]</syntaxhighlight> || Error || Aborted || - || Skipped - Because timed out
|-
| [https://dlmf.nist.gov/5.15.E1 5.15.E1] || [[Item:Q2170|<math>\digamma'@{z} = \sum_{k=0}^{\infty}\frac{1}{(k+z)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma'@{z} = \sum_{k=0}^{\infty}\frac{1}{(k+z)^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff( Psi(z), z$(1) ) = sum((1)/((k + z)^(2)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[PolyGamma[z], {z, 1}] == Sum[Divide[1,(k + z)^(2)], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.15.E2 5.15.E2] || [[Item:Q2171|<math>\polygamma{n}@{1} = (-1)^{n+1}n!\Riemannzeta@{n+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\polygamma{n}@{1} = (-1)^{n+1}n!\Riemannzeta@{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(n, 1) = (- 1)^(n + 1)* factorial(n)*Zeta(n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[n, 1] == (- 1)^(n + 1)* (n)!*Zeta[n + 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.15.E3 5.15.E3] || [[Item:Q2172|<math>\polygamma{n}@{\tfrac{1}{2}} = (-1)^{n+1}n!(2^{n+1}-1)\Riemannzeta@{n+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\polygamma{n}@{\tfrac{1}{2}} = (-1)^{n+1}n!(2^{n+1}-1)\Riemannzeta@{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi(n, (1)/(2)) = (- 1)^(n + 1)* factorial(n)*((2)^(n + 1)- 1)*Zeta(n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[n, Divide[1,2]] == (- 1)^(n + 1)* (n)!*((2)^(n + 1)- 1)*Zeta[n + 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.15.E4 5.15.E4] || [[Item:Q2173|<math>\digamma'@{n-\tfrac{1}{2}} = \tfrac{1}{2}\pi^{2}-4\sum_{k=1}^{n-1}\frac{1}{(2k-1)^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma'@{n-\tfrac{1}{2}} = \tfrac{1}{2}\pi^{2}-4\sum_{k=1}^{n-1}\frac{1}{(2k-1)^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>subs( temp=n -(1)/(2), diff( Psi(temp), temp$(1) ) ) = (1)/(2)*(Pi)^(2)- 4*sum((1)/((2*k - 1)^(2)), k = 1..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[PolyGamma[temp], {temp, 1}]/.temp-> n -Divide[1,2]) == Divide[1,2]*(Pi)^(2)- 4*Sum[Divide[1,(2*k - 1)^(2)], {k, 1, n - 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-
| [https://dlmf.nist.gov/5.15.E5 5.15.E5] || [[Item:Q2174|<math>\digamma^{(n)}@{z+1} = \digamma^{(n)}@{z}+(-1)^{n}n!z^{-n-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma^{(n)}@{z+1} = \digamma^{(n)}@{z}+(-1)^{n}n!z^{-n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>subs( temp=z + 1, diff( Psi(temp), temp$(n) ) ) = diff( Psi(z), z$(n) )+(- 1)^(n)* factorial(n)*(z)^(- n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[PolyGamma[temp], {temp, n}]/.temp-> z + 1) == D[PolyGamma[z], {z, n}]+(- 1)^(n)* (n)!*(z)^(- n - 1)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-
| [https://dlmf.nist.gov/5.15.E6 5.15.E6] || [[Item:Q2175|<math>\digamma^{(n)}@{1-z}+(-1)^{n-1}\digamma^{(n)}@{z} = (-1)^{n}\pi\deriv[n]{}{z}\cot@{\pi z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma^{(n)}@{1-z}+(-1)^{n-1}\digamma^{(n)}@{z} = (-1)^{n}\pi\deriv[n]{}{z}\cot@{\pi z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>subs( temp=1 - z, diff( Psi(temp), temp$(n) ) )+(- 1)^(n - 1)* diff( Psi(z), z$(n) ) = (- 1)^(n)* Pi*diff(cot(Pi*z), [z$(n)])</syntaxhighlight> || <syntaxhighlight lang=mathematica>(D[PolyGamma[temp], {temp, n}]/.temp-> 1 - z)+(- 1)^(n - 1)* D[PolyGamma[z], {z, n}] == (- 1)^(n)* Pi*D[Cot[Pi*z], {z, n}]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.111486978443634, 1.4242909397222407], Times[Complex[-1.1253971041044755, 1.3474673991212198], Inactive[Sum][Times[Power[-0.5, K[1.0]], Power[Complex[2.0570132833277626, -0.06826349589921218], K[1.0]], Factorial[K[1.0]], StirlingS2[1.0, K[1.0]]]
Test Values: {K[1.0], 0.0, 1.0}]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[9.936030880873925, 6.770945349247037], Times[Complex[-8.466387364061939, -7.071078549251696], Inactive[Sum][Times[Power[-0.5, K[1.0]], Power[Complex[2.0570132833277626, -0.06826349589921218], K[1.0]], Factorial[K[1.0]], StirlingS2[2.0, K[1.0]]]
Test Values: {K[1.0], 0.0, 2.0}]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.15.E7 5.15.E7] || [[Item:Q2176|<math>\digamma^{(n)}@{mz} = \frac{1}{m^{n+1}}\sum_{k=0}^{m-1}\digamma^{(n)}@{z+\frac{k}{m}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma^{(n)}@{mz} = \frac{1}{m^{n+1}}\sum_{k=0}^{m-1}\digamma^{(n)}@{z+\frac{k}{m}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff( Psi(m*z), m*z$(n) ) = (1)/((m)^(n + 1))*sum(subs( temp=z +(k)/(m), diff( Psi(temp), temp$(n) ) ), k = 0..m - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[PolyGamma[m*z], {m*z, n}] == Divide[1,(m)^(n + 1)]*Sum[D[PolyGamma[temp], {temp, n}]/.temp-> z +Divide[k,m], {k, 0, m - 1}, GenerateConditions->None]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [63 / 63]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.1320242650810568, 1.0823171404691536], D[Complex[-0.4765906465900115, 0.839495097073875]
Test Values: {Complex[0.8660254037844387, 0.49999999999999994], 1.0}]], {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.3478434500030721, -2.260508246850942], D[Complex[-0.4765906465900115, 0.839495097073875]
Test Values: {Complex[0.8660254037844387, 0.49999999999999994], 2.0}]], {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.16.E1 5.16.E1] || [[Item:Q2178|<math>\sum_{k=1}^{\infty}(-1)^{k}\digamma'@{k} = -\frac{\pi^{2}}{8}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=1}^{\infty}(-1)^{k}\digamma'@{k} = -\frac{\pi^{2}}{8}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((- 1)^(k)* diff( Psi(k), k$(1) ), k = 1..infinity) = -((Pi)^(2))/(8)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(k)* D[PolyGamma[k], {k, 1}], {k, 1, Infinity}, GenerateConditions->None] == -Divide[(Pi)^(2),8]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.16.E2 5.16.E2] || [[Item:Q2179|<math>\sum_{k=1}^{\infty}\frac{1}{k}\digamma'@{k+1} = \Riemannzeta@{3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=1}^{\infty}\frac{1}{k}\digamma'@{k+1} = \Riemannzeta@{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum((1)/(k)*subs( temp=k + 1, diff( Psi(temp), temp$(1) ) ), k = 1..infinity) = Zeta(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[1,k]*(D[PolyGamma[temp], {temp, 1}]/.temp-> k + 1), {k, 1, Infinity}, GenerateConditions->None] == Zeta[3]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.16.E2 5.16.E2] || [[Item:Q2179|<math>\Riemannzeta@{3} = -\frac{1}{2}\digamma''@{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemannzeta@{3} = -\frac{1}{2}\digamma''@{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Zeta(3) = -(1)/(2)*subs( temp=1, diff( Psi(temp), temp$(2) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Zeta[3] == -Divide[1,2]*(D[PolyGamma[temp], {temp, 2}]/.temp-> 1)</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.17#Ex1 5.17#Ex1] || [[Item:Q2180|<math>\BarnesG@{z+1} = \EulerGamma@{z}\BarnesG@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{z+1} = \EulerGamma@{z}\BarnesG@{z}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[z + 1] == Gamma[z]*BarnesG[z]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 5]
|-
| [https://dlmf.nist.gov/5.17#Ex2 5.17#Ex2] || [[Item:Q2181|<math>\BarnesG@{1} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{1} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[1] == 1</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.17.E3 5.17.E3] || [[Item:Q2183|<math>\BarnesG@{z+1} = (2\pi)^{z/2}\exp@{-\tfrac{1}{2}z(z+1)-\tfrac{1}{2}\EulerConstant z^{2}}\*\prod_{k=1}^{\infty}\left(\left(1+\frac{z}{k}\right)^{k}\exp@{-z+\frac{z^{2}}{2k}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{z+1} = (2\pi)^{z/2}\exp@{-\tfrac{1}{2}z(z+1)-\tfrac{1}{2}\EulerConstant z^{2}}\*\prod_{k=1}^{\infty}\left(\left(1+\frac{z}{k}\right)^{k}\exp@{-z+\frac{z^{2}}{2k}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[z + 1] == (2*Pi)^(z/2)* Exp[-Divide[1,2]*z*(z + 1)-Divide[1,2]*EulerGamma*(z)^(2)]* Product[(1 +Divide[z,k])^(k)* Exp[- z +Divide[(z)^(2),2*k]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-
| [https://dlmf.nist.gov/5.17.E4 5.17.E4] || [[Item:Q2184|<math>\Ln@@{\BarnesG@{z+1}} = \tfrac{1}{2}z\ln@{2\pi}-\tfrac{1}{2}z(z+1)+z\Ln@@{\EulerGamma@{z+1}}-\int_{0}^{z}\Ln@@{\EulerGamma@{t+1}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\BarnesG@{z+1}} = \tfrac{1}{2}z\ln@{2\pi}-\tfrac{1}{2}z(z+1)+z\Ln@@{\EulerGamma@{z+1}}-\int_{0}^{z}\Ln@@{\EulerGamma@{t+1}}\diff{t}</syntaxhighlight> || <math>\realpart@@{(z+1)} > 0, \realpart@@{(t+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[BarnesG[z + 1]] == Divide[1,2]*z*Log[2*Pi]-Divide[1,2]*z*(z + 1)+ z*Log[Gamma[z + 1]]- Integrate[Log[Gamma[t + 1]], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 7]
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.17.E6 5.17.E6] || [[Item:Q2186|<math>A = e^{C}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A = e^{C}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A = exp(C)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A == Exp[C]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || [[Item:Q2187|<math>C = \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>C = \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>C = limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>C == Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6172709270+.5000000000*I
Test Values: {C = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7487544770+.8660254040*I
Test Values: {C = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2512455230-.8660254040*I
Test Values: {C = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.114779881-.5000000000*I
Test Values: {C = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6172709267506544, 0.49999999999999994]
Test Values: {Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.7487544770337841, 0.8660254037844387]
Test Values: {Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || [[Item:Q2187|<math>\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) = \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) = \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity) = (gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None] == Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || [[Item:Q2187|<math>\frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} = \frac{1}{12}-\Riemannzeta'@{-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} = \frac{1}{12}-\Riemannzeta'@{-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2)) = (1)/(12)- subs( temp=- 1, diff( Zeta(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)] == Divide[1,12]- (D[Zeta[temp], {temp, 1}]/.temp-> - 1)</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.18.E1 5.18.E1] || [[Item:Q2188|<math>\qPochhammer{a}{q}{n} = \prod_{k=0}^{n-1}(1-aq^{k})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qPochhammer{a}{q}{n} = \prod_{k=0}^{n-1}(1-aq^{k})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QPochhammer(a, q, n) = product(1 - a*(q)^(k), k = 0..n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QPochhammer[a, q, n] == Product[1 - a*(q)^(k), {k, 0, n - 1}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 60]
|-
| [https://dlmf.nist.gov/5.18.E3 5.18.E3] || [[Item:Q2190|<math>\qPochhammer{a}{q}{\infty} = \prod_{k=0}^{\infty}(1-aq^{k})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qPochhammer{a}{q}{\infty} = \prod_{k=0}^{\infty}(1-aq^{k})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QPochhammer(a, q, infinity) = product(1 - a*(q)^(k), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QPochhammer[a, q, Infinity] == Product[1 - a*(q)^(k), {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [48 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Times[-1.0, QPochhammer[-1.5, Complex[0.8660254037844387, 0.49999999999999994]]], QPochhammer[-1.5, Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]
Test Values: {Rule[a, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.18.E4 5.18.E4] || [[Item:Q2191|<math>\qGamma{q}@{z} = \qPochhammer{q}{q}{\infty}(1-q)^{1-z}/\qPochhammer{q^{z}}{q}{\infty}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qGamma{q}@{z} = \qPochhammer{q}{q}{\infty}(1-q)^{1-z}/\qPochhammer{q^{z}}{q}{\infty}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QGAMMA(q, z) = QPochhammer(q, q, infinity)*(1 - q)^(1 - z)/QPochhammer((q)^(z), q, infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QGamma[z,q] == QPochhammer[q, q, Infinity]*(1 - q)^(1 - z)/QPochhammer[(q)^(z), q, Infinity]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [56 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[QGamma[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994]], Times[Complex[-0.4701974928403924, -0.07292434984262404], Power[QPochhammer[Complex[0.6918839380246471, 0.3371668184918191], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[QGamma[Complex[-0.4999999999999998, 0.8660254037844387], Complex[0.8660254037844387, 0.49999999999999994]], Times[Complex[-0.021172596861766507, 0.11798586945608598], Power[QPochhammer[Complex[0.6137803977754971, -0.16446196191399762], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]], -1], QPochhammer[Complex[0.8660254037844387, 0.49999999999999994], Complex[0.8660254037844387, 0.49999999999999994], DirectedInfinity[1]]]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.18.E5 5.18.E5] || [[Item:Q2192|<math>\qGamma{q}@{1} = \qGamma{q}@{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qGamma{q}@{1} = \qGamma{q}@{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QGAMMA(q, 1) = QGAMMA(q, 2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QGamma[1,q] == QGamma[2,q]</syntaxhighlight> || Error || Successful || - || Successful [Tested: 10]
|-
| [https://dlmf.nist.gov/5.18.E5 5.18.E5] || [[Item:Q2192|<math>\qGamma{q}@{2} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qGamma{q}@{2} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QGAMMA(q, 2) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>QGamma[2,q] == 1</syntaxhighlight> || Error || Successful || - || Successful [Tested: 10]
|-
| [https://dlmf.nist.gov/5.18.E6 5.18.E6] || [[Item:Q2193|<math>\qfactorial{n}{q} = \qGamma{q}@{n+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qfactorial{n}{q} = \qGamma{q}@{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QFactorial(n, q) = QGAMMA(q, n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QFactorial[n,q] == QGamma[n + 1,q]</syntaxhighlight> || Error || Successful || - || Successful [Tested: 30]
|-
| [https://dlmf.nist.gov/5.18.E7 5.18.E7] || [[Item:Q2194|<math>\qGamma{q}@{z+1} = \frac{1-q^{z}}{1-q}\qGamma{q}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qGamma{q}@{z+1} = \frac{1-q^{z}}{1-q}\qGamma{q}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QGAMMA(q, z + 1) = (1 - (q)^(z))/(1 - q)*QGAMMA(q, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QGamma[z + 1,q] == Divide[1 - (q)^(z),1 - q]*QGamma[z,q]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [17 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.18.E8 5.18.E8] || [[Item:Q2195|<math>\qGamma{q}@{x} < \qGamma{r}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qGamma{q}@{x} < \qGamma{r}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QGAMMA(q, x) < QGAMMA(r, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QGamma[x,q] < QGamma[x,r]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [174 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[QGamma[1.5, Complex[0.8660254037844387, 0.49999999999999994]], Complex[0.4591522571856908, -0.3749002120921232]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[QGamma[0.5, Complex[0.8660254037844387, 0.49999999999999994]], Complex[4.854857756142472*^-6, 0.9372445842681697]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.18.E9 5.18.E9] || [[Item:Q2196|<math>\qGamma{q}@{x} > \qGamma{r}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\qGamma{q}@{x} > \qGamma{r}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>QGAMMA(q, x) > QGAMMA(r, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>QGamma[x,q] > QGamma[x,r]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [174 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Greater[QGamma[1.5, Complex[0.8660254037844387, 0.49999999999999994]], Complex[0.4591522571856908, -0.3749002120921232]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Greater[QGamma[0.5, Complex[0.8660254037844387, 0.49999999999999994]], Complex[4.854857756142472*^-6, 0.9372445842681697]]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.18.E10 5.18.E10] || [[Item:Q2197|<math>\lim_{q\to 1-}\qGamma{q}@{z} = \EulerGamma@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{q\to 1-}\qGamma{q}@{z} = \EulerGamma@{z}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>limit(QGAMMA(q, z), q = 1, left) = GAMMA(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[QGamma[z,q], q -> 1, Direction -> "FromBelow", GenerateConditions->None] == Gamma[z]</syntaxhighlight> || Failure || Aborted || Error || Skipped - Because timed out
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.19#Ex1 5.19#Ex1] || [[Item:Q2200|<math>S = \sum_{k=0}^{\infty}a_{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>S = \sum_{k=0}^{\infty}a_{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">S = sum(a[k], k = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">S == Sum[Subscript[a, k], {k, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.19#Ex2 5.19#Ex2] || [[Item:Q2201|<math>a_{k} = \frac{k}{(3k+2)(2k+1)(k+1)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{k} = \frac{k}{(3k+2)(2k+1)(k+1)}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[k] = (k)/((3*k + 2)*(2*k + 1)*(k + 1))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, k] == Divide[k,(3*k + 2)*(2*k + 1)*(k + 1)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.19.E2 5.19.E2] || [[Item:Q2202|<math>a_{k} = \frac{2}{k+\frac{2}{3}}-\frac{1}{k+\frac{1}{2}}-\frac{1}{k+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{k} = \frac{2}{k+\frac{2}{3}}-\frac{1}{k+\frac{1}{2}}-\frac{1}{k+1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[k] = (2)/(k +(2)/(3))-(1)/(k +(1)/(2))-(1)/(k + 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, k] == Divide[2,k +Divide[2,3]]-Divide[1,k +Divide[1,2]]-Divide[1,k + 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/5.19.E3 5.19.E3] || [[Item:Q2203|<math>S = \digamma@{\tfrac{1}{2}}-2\digamma@{\tfrac{2}{3}}-\EulerConstant</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>S = \digamma@{\tfrac{1}{2}}-2\digamma@{\tfrac{2}{3}}-\EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S = Psi((1)/(2))- 2*Psi((2)/(3))- gamma</syntaxhighlight> || <syntaxhighlight lang=mathematica>S == PolyGamma[Divide[1,2]]- 2*PolyGamma[Divide[2,3]]- EulerGamma</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7702822630+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5957431410+.8660254040*I
Test Values: {S = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4042568590-.8660254040*I
Test Values: {S = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.9617685450-.5000000000*I
Test Values: {S = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7702822631342183, 0.49999999999999994]
Test Values: {Rule[S, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.5957431406502202, 0.8660254037844387]
Test Values: {Rule[S, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.19.E3 5.19.E3] || [[Item:Q2203|<math>\digamma@{\tfrac{1}{2}}-2\digamma@{\tfrac{2}{3}}-\EulerConstant = 3\ln@@{3}-2\ln@@{2}-\tfrac{1}{3}\pi\sqrt{3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\digamma@{\tfrac{1}{2}}-2\digamma@{\tfrac{2}{3}}-\EulerConstant = 3\ln@@{3}-2\ln@@{2}-\tfrac{1}{3}\pi\sqrt{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Psi((1)/(2))- 2*Psi((2)/(3))- gamma = 3*ln(3)- 2*ln(2)-(1)/(3)*Pi*sqrt(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>PolyGamma[Divide[1,2]]- 2*PolyGamma[Divide[2,3]]- EulerGamma == 3*Log[3]- 2*Log[2]-Divide[1,3]*Pi*Sqrt[3]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 1]
|-
| [https://dlmf.nist.gov/5.19#Ex3 5.19#Ex3] || [[Item:Q2204|<math>V = \frac{\pi^{\frac{1}{2}n}r^{n}}{\EulerGamma@{\frac{1}{2}n+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>V = \frac{\pi^{\frac{1}{2}n}r^{n}}{\EulerGamma@{\frac{1}{2}n+1}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}n+1)} > 0</math> || <syntaxhighlight lang=mathematica>V = ((Pi)^((1)/(2)*n)* (r)^(n))/(GAMMA((1)/(2)*n + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>V == Divide[(Pi)^(Divide[1,2]*n)* (r)^(n),Gamma[Divide[1,2]*n + 1]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.866025403+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -6.202558068+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 15.00319234+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.133974595+.5000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = 1.5, n = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.866025403784439, 0.49999999999999994]
Test Values: {Rule[n, 1], Rule[r, -1.5], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-6.202558066792596, 0.49999999999999994]
Test Values: {Rule[n, 2], Rule[r, -1.5], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.19#Ex4 5.19#Ex4] || [[Item:Q2205|<math>S = \frac{2\pi^{\frac{1}{2}n}r^{n-1}}{\EulerGamma@{\frac{1}{2}n}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>S = \frac{2\pi^{\frac{1}{2}n}r^{n-1}}{\EulerGamma@{\frac{1}{2}n}}</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}n)} > 0</math> || <syntaxhighlight lang=mathematica>S = (2*(Pi)^((1)/(2)*n)* (r)^(n - 1))/(GAMMA((1)/(2)*n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S == Divide[2*(Pi)^(Divide[1,2]*n)* (r)^(n - 1),Gamma[Divide[1,2]*n]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [174 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.133974596+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 10.29080337+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -27.40830850+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.133974596+.5000000000*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, r = 1.5, n = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [174 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.1339745962155612, 0.49999999999999994]
Test Values: {Rule[n, 1], Rule[r, -1.5], Rule[S, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[10.290803364553819, 0.49999999999999994]
Test Values: {Rule[n, 2], Rule[r, -1.5], Rule[S, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.19#Ex4 5.19#Ex4] || [[Item:Q2205|<math>\frac{2\pi^{\frac{1}{2}n}r^{n-1}}{\EulerGamma@{\frac{1}{2}n}} = \frac{n}{r}V</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2\pi^{\frac{1}{2}n}r^{n-1}}{\EulerGamma@{\frac{1}{2}n}} = \frac{n}{r}V</syntaxhighlight> || <math>\realpart@@{(\frac{1}{2}n)} > 0</math> || <syntaxhighlight lang=mathematica>(2*(Pi)^((1)/(2)*n)* (r)^(n - 1))/(GAMMA((1)/(2)*n)) = (n)/(r)*V</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*(Pi)^(Divide[1,2]*n)* (r)^(n - 1),Gamma[Divide[1,2]*n]] == Divide[n,r]*V</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.577350269+.3333333334*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -8.270077424+.6666666665*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 30.00638471+1.000000000*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = -1.5, n = 3}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.422649731-.3333333334*I
Test Values: {V = 1/2*3^(1/2)+1/2*I, r = 1.5, n = 1}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [180 / 180]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.5773502691896253, 0.33333333333333326]
Test Values: {Rule[n, 1], Rule[r, -1.5], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-8.270077422390127, 0.6666666666666665]
Test Values: {Rule[n, 2], Rule[r, -1.5], Rule[V, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-
| [https://dlmf.nist.gov/5.20.E1 5.20.E1] || [[Item:Q2206|<math>W = \frac{1}{2}\sum_{\ell=1}^{n}x_{\ell}^{2}-\sum_{1\leq\ell<j\leq n}\ln@@{|x_{\ell}-x_{j}|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>W = \frac{1}{2}\sum_{\ell=1}^{n}x_{\ell}^{2}-\sum_{1\leq\ell<j\leq n}\ln@@{|x_{\ell}-x_{j}|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>W = (1)/(2)*sum((x[ell])^(2), ell = 1..n)- sum(sum(ln(abs(x[ell]- x[j])), j = ell + 1..n), ell = 1..j - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>W == Divide[1,2]*Sum[(Subscript[x, \[ScriptL]])^(2), {\[ScriptL], 1, n}, GenerateConditions->None]- Sum[Sum[Log[Abs[Subscript[x, \[ScriptL]]- Subscript[x, j]]], {j, [ScriptL] + 1, n}, GenerateConditions->None], {\[ScriptL], 1, j - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
|-
| [https://dlmf.nist.gov/5.20.E4 5.20.E4] || [[Item:Q2209|<math>W = -\sum_{1\leq\ell<j\leq n}\ln@@{|e^{i\theta_{\ell}}-e^{i\theta_{j}}|}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>W = -\sum_{1\leq\ell<j\leq n}\ln@@{|e^{i\theta_{\ell}}-e^{i\theta_{j}}|}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>W = - sum(sum(ln(abs(exp(I*theta[ell])- exp(I*theta[j]))), j = ell + 1..n), ell = 1..j - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>W == - Sum[Sum[Log[Abs[Exp[I*Subscript[\[Theta], \[ScriptL]]]- Exp[I*Subscript[\[Theta], j]]]], {j, [ScriptL] + 1, n}, GenerateConditions->None], {\[ScriptL], 1, j - 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Error
|}
</div>
</div>

Latest revision as of 16:41, 25 May 2021